• 제목/요약/키워드: Question-Answering System

검색결과 155건 처리시간 0.032초

A Natural Language Question Answering System-an Application for e-learning

  • Gupta, Akash;Rajaraman, Prof. V.
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
    • /
    • pp.285-291
    • /
    • 2001
  • This paper describes a natural language question answering system that can be used by students in getting as solution to their queries. Unlike AI question answering system that focus on the generation of new answers, the present system retrieves existing ones from question-answer files. Unlike information retrieval approaches that rely on a purely lexical metric of similarity between query and document, it uses a semantic knowledge base (WordNet) to improve its ability to match question. Paper describes the design and the current implementation of the system as an intelligent tutoring system. Main drawback of the existing tutoring systems is that the computer poses a question to the students and guides them in reaching the solution to the problem. In the present approach, a student asks any question related to the topic and gets a suitable reply. Based on his query, he can either get a direct answer to his question or a set of questions (to a maximum of 3 or 4) which bear the greatest resemblance to the user input. We further analyze-application fields for such kind of a system and discuss the scope for future research in this area.

  • PDF

Concept-based Question Answering System

  • Kang Yu-Hwan;Shin Seung-Eun;Ahn Young-Min;Seo Young-Hoon
    • International Journal of Contents
    • /
    • 제2권1호
    • /
    • pp.17-21
    • /
    • 2006
  • In this paper, we describe a concept-based question-answering system in which concept rather than keyword itself makes an important role on both question analysis and answer extraction. Our idea is that concepts occurred in same type of questions are similar, and if a question is analyzed according to those concepts then we can extract more accurate answer because we know the semantic role of each word or phrase in question. Concept frame is defined for each type of question, and it is composed of important concepts in that question type. Currently the number of question type is 79 including 34 types for person, 14 types for location, and so on. We experiment this concept-based approach about questions which require person s name as their answer. Experimental results show that our system has high accuracy in answer extraction. Also, this concept-based approach can be used in combination with conventional approaches.

  • PDF

질의 응답 시스템을 위한 질의문 심층 분석 (Deep Analysis of Question for Question Answering System)

  • 신승은;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제6권3호
    • /
    • pp.12-19
    • /
    • 2006
  • 본 논문에서는 질의 응답 시스템의 성능 향상을 위한 질의문 심층 분석을 제안한다. 일반적인 질의응답 시스템들은 사용자의 자연언어 질의의 의미를 분석하지 않기 때문에 정확한 정답을 제공하는 것이 어렵다. 질의문 심층 분석은 의미자질 추출 문법과 자연언어 질의 특성을 이용하여 사용자의 질의를 의미적으로 분석하고, 의미자질들을 추출한다. 의미자질 추출 문법과 자연언어 질의 특성은 사용자 질의의 의미와 구문 구조를 반영하기 위해 의미자질과 형식형태소로 표현된다. 웹에서 추출한 세부 정답 유형이 '인물'인 100개의 질의에 대한 실험을 통해, 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대해 질의문 심층 분석을 수행함으로써 사용자의 질의 의도를 분석하고, 의미자질들을 추출할 수 있음을 보였다.

  • PDF

도메인 질의응답 시스템 (Domain Question Answering System)

  • 윤승현;임은희;김덕호
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권2호
    • /
    • pp.144-147
    • /
    • 2015
  • Question Answering (QA) 서비스는 사용자의 자연어 질의에 대응하는 정확한 답변을 제공하는 시스템이다. 본 연구는 특정 도메인에 관련한 사용자들의 질문에 대해 QA 서비스가 자동으로 대응하는 방법에 관한 연구이다. 이를 수행하기 위하여 사용자의 자연어 질문을 이해하고, 정형 데이터 및 비정형 데이터로부터 사용자 질문에 적합한 답변을 도출하여 제공하는 방법을 제시한다. 실험 결과 top 1 accuracy 68%, top 5 accuracy 77% 결과를 얻었다. 또한 본 논문은 QA 시스템 내부 모듈이 전체 accuracy에 미치는 영향에 대해서도 기술하였다.

이용자 참여형 참고 서비스 개발을 위한 질문 유형 구분에 대한 문헌적 고찰 (Literature Review of Queston Taxonomy for Developing User-participatory Reference Service)

  • 박종도
    • 한국문헌정보학회지
    • /
    • 제49권4호
    • /
    • pp.401-417
    • /
    • 2015
  • 질문 분류는 질의응답과정에서 질문자의 정보요구를 이해하고 주어진 질문에 대해 적합한 답변을 제공하기 위한 중요한 방법 중의 하나이다. 이 연구의 목적은 온라인 및 도서관에서 활용 가능한 질의응답 서비스의 질문 분류체계를 조사해보고, 각 질의응답서비스의 유형별로 어떠한 특징이 있는지 살펴보고자 하였다. 이를 위해, 도서관의 참고서비스 및 온라인 상의 소셜 레프런스, 자동 질의응답 시스템을 대상으로 질문을 어떻게 분류하여 활용하고 있는지를 문헌 조사를 통해 살펴보고 종합하여 질문의 유형을 정리하였다.

개념 기반 질의-응답 시스템에서의 정답 추출 (Answer Extraction of Concept based Question-Answering System)

  • 안영민;오수현;강유환;서영훈
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2005년도 춘계 종합학술대회 논문집
    • /
    • pp.448-451
    • /
    • 2005
  • 본 논문에서는 개념 기반 질의-응답 시스템에서의 정답 추출 방법에 대하여 기술한다. 개념 기반 질의-응답 시스템은 개념 정보를 이용하여 해답을 추출하는 시스템을 말하며, 질의분석을 통해 분류되고 추출된 개념 그에 따른 정답 추출 규칙을 이용하여 정답을 추출하는 방법과 시스템에 대하여 연구하였다. 질의에 대한 정답이 들어 있는 문서들을 분석하여 정답 추출 규칙을 작성한다. 규칙은 개념과 구문정보를 포함하고 있으며 작성된 규칙을 통하여 문서로부터 정답후보를 생성하고 정답을 선택한다.

  • PDF

정의형 질의응답 시스템을 위한 정답 패턴 (Answer Pattern for Definitional Question-Answering System)

  • 서영훈;신승은
    • 한국콘텐츠학회논문지
    • /
    • 제5권3호
    • /
    • pp.209-215
    • /
    • 2005
  • 본 논문에서는 정의형 질의응답 시스템을 위한 정답 패턴에 대하여 기술한다. 정의형 질의응답 시스템은 정의형 질의에 대한 정답으로 단답형 정답이 아닌 서술형 정답을 제공하기 때문에, 정답 추출 방법이 일반적인 단답형 정답 추출 방법과 다르다. 정의형 정답 패턴을 이용한 정의형 정답 추출은 의미 분석없이 정확한 정의형 정답을 추출할 수 있다. 정의형 정답 패턴은 정확한 정답 추출을 위해 정답 패턴과 패턴별 제약 규칙, 우선순위로 구성된다. 정의형 정답 학습 코퍼스로부터 정답 패턴을 추출하고, 각각의 정답 패턴에 대한F-measure에 따라 최적화하여 패턴별 제약 규칙을 구성한다. 마지막으로 정확률과 정답 패턴 구문 구조를 이용하여 우선순위를 결정한다. 제안한 정의형 정답 패턴을 이용한 정의형 정답 추출은 실험 코퍼스에 대해 정확률 0.8207, 재현율 0.9268, F-measure 0.8705를 보였다. 이것은 제안한 방법이 정의형 질의응답 시스템에 효율적으로 사용될 수 있음을 의미한다.

  • PDF

질의응답시스템에서 정답 특징에 관한 실험적 분석 (Experimental Analysis of Correct Answer Characteristics in Question Answering Systems)

  • 한경수
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권5호
    • /
    • pp.927-933
    • /
    • 2018
  • 자연어 질문에 대해 답변을 찾아 제공하는 질의응답시스템의 오류에 가장 큰 영향을 미치는 요소 중 하나가 질문으로 정답을 포함하고 있을 만한 문서나 단락을 검색하는 단계이다. 검색의 성능 향상을 위해서는 정답 포함 문서 및 단락의 특징을 잘 이해해야 한다. 본 논문은 질문, 정답 포함 문서, 정답 미포함 문서로 구성된 말뭉치를 사용하여 정답 문서에는 질문 단어가 얼마나 많이 출현하는지, 출현 위치는 어떻게 분포하는지, 질문과 정답 문서의 주제는 얼마나 유사한지 등을 실험적으로 분석한다. 이를 통해 질의응답시스템을 위한 기존의 검색 연구 결과들에 대한 원인을 설명하고 효과적인 검색 단계의 필요 요소에 관해 논의한다.

구문 관계 정보를 이용한 한국어 질의-응답 시스템 (Korean Question-Answering System using Syntactic-Relation Information)

  • 신승은;이대연;서영훈
    • 한국콘텐츠학회논문지
    • /
    • 제4권2호
    • /
    • pp.36-42
    • /
    • 2004
  • 본 논문은 대규모 지식베이스와 언어 자원의 부족 문제를 해결하기 위한 동사의 구문 관계 정보를 이용한 한국어 질의-응답 시스템에 대해 기술한다. 구문 관계 정보는 동사의 원형, 사용 패턴, 각 문장 성분들의 의미 속성, 유의 동사 등의 정보를 담고 있다. 문장 및 구에 대한 구문분석은 구문관계 정보에 나타난 동사에 의존적인 문장 성분들의 의미속성과 동사의 일반적인 사용 패턴을 활용한다. 또한 정답후보 문장들의 구문분석을 위해 구문 관계 정보를 사용하고, 질의문의 격 슬롯(case slot)으로부터 정답을 찾기 위해 구문관계 정보를 사용한다. 실험에서 동사의 구문 관계 정보의 이용이 대규모 지식베이스와 언어 자원의 부족 문제를 해결하기 위해 한국어 질의-응답 시스템에 효율적으로 활용될 수 있음을 보였다.

  • PDF

질의 응답 시스템에서 지식 설명의 의미적 포함 관계를 고려한 의미적 퍼지 함의 연산자 (Semantic Fuzzy Implication Operator for Semantic Implication Relationship of Knowledge Descriptions in Question Answering System)

  • 안찬민;이주홍;최범기;박선
    • 한국콘텐츠학회논문지
    • /
    • 제11권3호
    • /
    • pp.73-83
    • /
    • 2011
  • 질의 응답 시스템은 사용자의 질의에 대해 다른 사용자의 응답을 저장하고 보여 주는 시스템이다. 사용자의 질의를 만족시키는 응답을 정확히 검색하고자 노력하는 많은 연구들이 있었지만 이에는 근본적인 한계가 있었다. 따라서 질의 응답 시스템에서는 보조적인 방법으로 사용자의 질의를 만족시킬 가능성이 높은 다른 질의를 추천하는 방법이 사용되고 있다. 이전 연구에서 내용적으로 포함하는 정도가 큰 질의들을 하위 질의로서 추천하는 내용 기반 추천 방법으로서 퍼지 관계 곱 연산자(fuzzy relational product operator)를 사용하는 방법이 제안되었고, 기본적인 함의 연산자로서 Kleene-Dienes 연산자가 사용되었다. 하지만 Kleene-Dienes 연산자는 설명의 의미적 포함관계를 고려한 방법이 아니기 때문에 질의응답의 의미적 포함 정도를 계산하기에 적합하지 않다. 본 논문에서는 두 질의에 대한 설명의 의미적 포함관계를 고려한 새로운 함의 연산자를 제안한다. 새로운 연산자는 어떤 질의 및 응답 들이 다른 질의와 그 응답들에 의미적으로 포함되는 정도를 계산하도록 설계되었다. 실험을 통하여 새로운 함의 연산자를 적용한 퍼지 관계곱 연산자를 사용하면 사용자가 원하는 지식을 추천할 가능성이 높아짐을 보였다.