• Title/Summary/Keyword: Question and answer documents

Search Result 37, Processing Time 0.029 seconds

Semantic-based Query Generation For Information Retrieval

  • Shin Seung-Eun;Seo Young-Hoon
    • International Journal of Contents
    • /
    • v.1 no.2
    • /
    • pp.39-43
    • /
    • 2005
  • In this paper, we describe a generation mechanism of semantic-based queries for high accuracy information retrieval and question answering. It is difficult to offer the correct retrieval result because general information retrieval systems do not analyze the semantic of user's natural language question. We analyze user's question semantically and extract semantic features, and we .generate semantic-based queries using them. These queries are generated using the se-mantic-based question analysis grammar and the query generation rule. They are represented as semantic features and grammatical morphemes that consider semantic and syntactic structure of user's questions. We evaluated our mechanism using 100 questions whose answer type is a person in the TREC-9 corpus and Web. There was a 0.28 improvement in the precision at 10 documents when semantic-based queries were used for information retrieval.

  • PDF

Query Processing based Branch Node Stream for XML Message Broker

  • Ko, Hye-Kyeong
    • International journal of advanced smart convergence
    • /
    • v.10 no.2
    • /
    • pp.64-72
    • /
    • 2021
  • XML message brokers have a lot of importance because XML has become a practical standard for data exchange in many applications. Message brokers covered in this document store many users. This paper is a study of the processing of twig pattern queries in XML documents using branching node streams in XML message broker structures. This work is about query processing in XML documents, especially for query processing with XML twig patterns in the XML message broker structure and proposed a method to reduce query processing time when parsing documents with XML twig patterns by processing information. In this paper, the twig pattern query processing method of documents using the branching node stream removes the twigging value of the branch node that does not include the labeling value of the branch node stream when it receives a twig query from the client. In this paper, the leaf node discovery time can be reduced by reducing the navigation time of nodes in XML documents that are matched to leaf nodes in twig queries for client twig queries. Overall, the overall processing time to respond to queries is reduced, allowing for rapid question-answer processing.

Question-Answering System using the Superlative Words (최상급 단서 어휘를 이용한 질의-응답시스템)

  • Park, Hee-Geun;Oh, Su-Hyun;Ahn, Young-Min;Seo, Young-Hoon
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.05a
    • /
    • pp.140-143
    • /
    • 2006
  • In this paper, we describe a question-answering system which extracts answers for the superlative questions which include the superlative words such as "the most", "the best", "the first", "the largest", "the least", and so on. The superlative questions are composed of four main components and others. Four main components are the superlative word, answer type, regional information, and a verb modified by the superlative word. We classify the superlative words into two types as to whether the verb has to be needed to be a question or not. The superlative word, answer type and regional information are essential elements to extract answer for all superlative questions. But the verb may be an essential element by the type of superlative word. Our system analyzes input question, and finds four main components of the superlative question. Also, our system searches relative documents and candidate sentences using them, and extracts answers from candidate sentences. Empirical result shows that our system has high precision and high recall for the superlative questions.

  • PDF

Development of a Regulatory Q&A System for KAERI Utilizing Document Search Algorithms and Large Language Model (거대언어모델과 문서검색 알고리즘을 활용한 한국원자력연구원 규정 질의응답 시스템 개발)

  • Hongbi Kim;Yonggyun Yu
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.31-39
    • /
    • 2023
  • The evolution of Natural Language Processing (NLP) and the rise of large language models (LLM) like ChatGPT have paved the way for specialized question-answering (QA) systems tailored to specific domains. This study outlines a system harnessing the power of LLM in conjunction with document search algorithms to interpret and address user inquiries using documents from the Korea Atomic Energy Research Institute (KAERI). Initially, the system refines multiple documents for optimized search and analysis, breaking the content into managable paragraphs suitable for the language model's processing. Each paragraph's content is converted into a vector via an embedding model and archived in a database. Upon receiving a user query, the system matches the extracted vectors from the question with the stored vectors, pinpointing the most pertinent content. The chosen paragraphs, combined with the user's query, are then processed by the language generation model to formulate a response. Tests encompassing a spectrum of questions verified the system's proficiency in discerning question intent, understanding diverse documents, and delivering rapid and precise answers.

QualityRank : Measuring Authority of Answer in Q&A Community using Social Network Analysis (QualityRank : 소셜 네트워크 분석을 통한 Q&A 커뮤니티에서 답변의 신뢰 수준 측정)

  • Kim, Deok-Ju;Park, Gun-Woo;Lee, Sang-Hoon
    • Journal of KIISE:Databases
    • /
    • v.37 no.6
    • /
    • pp.343-350
    • /
    • 2010
  • We can get answers we want to know via questioning in Knowledge Search Service (KSS) based on Q&A Community. However, it is getting more difficult to find credible documents in enormous documents, since many anonymous users regardless of credibility are participate in answering on the question. In previous works in KSS, researchers evaluated the quality of documents based on textual information, e.g. recommendation count, click count and non-textual information, e.g. answer length, attached data, conjunction count. Then, the evaluation results are used for enhancing search performance. However, the non-textual information has a problem that it is difficult to get enough information by users in the early stage of Q&A. The textual information also has a limitation for evaluating quality because of judgement by partial factors such as answer length, conjunction counts. In this paper, we propose the QualityRank algorithm to improve the problem by textual and non-textual information. This algorithm ranks the relevant and credible answers by considering textual/non-textual information and user centrality based on Social Network Analysis(SNA). Based on experimental validation we can confirm that the results by our algorithm is improved than those of textual/non-textual in terms of ranking performance.

A New Similarity Measure for Improving Ranking in QA Systems (질의응답시스템 응답순위 개선을 위한 새로운 유사도 계산방법)

  • Kim Myung-Gwan;Park Young-Tack
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.10 no.6
    • /
    • pp.529-536
    • /
    • 2004
  • The main idea of this paper is to combine position information in sentence and query type classification to make the documents ranking to query more accessible. First, the use of conceptual graphs for the representation of document contents In information retrieval is discussed. The method is based on well-known strategies of text comparison, such as Dice Coefficient, with position-based weighted term. Second, we introduce a method for learning query type classification that improves the ability to retrieve answers to questions from Question Answering system. Proposed methods employ naive bayes classification in machine learning fields. And, we used a collection of approximately 30,000 question-answer pairs for training, obtained from Frequently Asked Question(FAQ) files on various subjects. The evaluation on a set of queries from international TREC-9 question answering track shows that the method with machine learning outperforms the underline other systems in TREC-9 (0.29 for mean reciprocal rank and 55.1% for precision).

Machine Reading Comprehension-based Question and Answering System for Search and Analysis of Safety Standards (안전기준의 검색과 분석을 위한 기계독해 기반 질의응답 시스템)

  • Kim, Minho;Cho, Sanghyun;Park, Dugkeun;Kwon, Hyuk-Chul
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.351-360
    • /
    • 2020
  • If various unreasonable safety standards are preemptively and effectively readjusted, the risk of accidents can be reduced. In this paper, we proposed a machine reading comprehension-based safety standard Q&A system to secure supporting technology for effective search and analysis of safety standards for integrated and systematic management of safety standards. The proposed model finds documents related to safety standard questions in the various laws and regulations, and then divides these documents into provisions. Only those provisions that are likely to contain the answer to the question are selected, and then the BERT-based machine reading comprehension model is used to find answers to questions related to safety standards. When the proposed safety standard Q&A system is applied to KorQuAD dataset, the performance of EM 40.42% and F1 55.34% are shown.

A Study on the Development of Interactive Electronic Technical Manual to Improve the Maintainability for Underwater Guided Weapon (수중유도무기의 정비성 향상을 위한 전자식 기술교범 개발에 관한 연구)

  • Shin, Ju-Hwan;Yun, Won-Young
    • IE interfaces
    • /
    • v.18 no.3
    • /
    • pp.308-316
    • /
    • 2005
  • Delayed repair to the failure of weapon system can cause enormous damages to military operation. Various materials like diagnostic equipment, general and special tools, technical manuals(maintenance manual and illustrated parts breakdown) and drawing documents are required for maintenance. For existing weapon systems the distributed environment of these various materials reduces the maintenance effectiveness of maintenance crew. In this paper, to provide the information of maintenance procedures and supply to the maintenance crew we develope a digital interactive electronic technical manual of the technical documents which can be used easily in computer through question and answer method and improve maintenance effectiveness and minimized repairing time.

Inverse Document Frequency-Based Word Embedding of Unseen Words for Question Answering Systems (질의응답 시스템에서 처음 보는 단어의 역문헌빈도 기반 단어 임베딩 기법)

  • Lee, Wooin;Song, Gwangho;Shim, Kyuseok
    • Journal of KIISE
    • /
    • v.43 no.8
    • /
    • pp.902-909
    • /
    • 2016
  • Question answering system (QA system) is a system that finds an actual answer to the question posed by a user, whereas a typical search engine would only find the links to the relevant documents. Recent works related to the open domain QA systems are receiving much attention in the fields of natural language processing, artificial intelligence, and data mining. However, the prior works on QA systems simply replace all words that are not in the training data with a single token, even though such unseen words are likely to play crucial roles in differentiating the candidate answers from the actual answers. In this paper, we propose a method to compute vectors of such unseen words by taking into account the context in which the words have occurred. Next, we also propose a model which utilizes inverse document frequencies (IDF) to efficiently process unseen words by expanding the system's vocabulary. Finally, we validate that the proposed method and model improve the performance of a QA system through experiments.

Development of Information Extraction System from Multi Source Unstructured Documents for Knowledge Base Expansion (지식베이스 확장을 위한 멀티소스 비정형 문서에서의 정보 추출 시스템의 개발)

  • Choi, Hyunseung;Kim, Mintae;Kim, Wooju;Shin, Dongwook;Lee, Yong Hun
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.111-136
    • /
    • 2018
  • In this paper, we propose a methodology to extract answer information about queries from various types of unstructured documents collected from multi-sources existing on web in order to expand knowledge base. The proposed methodology is divided into the following steps. 1) Collect relevant documents from Wikipedia, Naver encyclopedia, and Naver news sources for "subject-predicate" separated queries and classify the proper documents. 2) Determine whether the sentence is suitable for extracting information and derive the confidence. 3) Based on the predicate feature, extract the information in the proper sentence and derive the overall confidence of the information extraction result. In order to evaluate the performance of the information extraction system, we selected 400 queries from the artificial intelligence speaker of SK-Telecom. Compared with the baseline model, it is confirmed that it shows higher performance index than the existing model. The contribution of this study is that we develop a sequence tagging model based on bi-directional LSTM-CRF using the predicate feature of the query, with this we developed a robust model that can maintain high recall performance even in various types of unstructured documents collected from multiple sources. The problem of information extraction for knowledge base extension should take into account heterogeneous characteristics of source-specific document types. The proposed methodology proved to extract information effectively from various types of unstructured documents compared to the baseline model. There is a limitation in previous research that the performance is poor when extracting information about the document type that is different from the training data. In addition, this study can prevent unnecessary information extraction attempts from the documents that do not include the answer information through the process for predicting the suitability of information extraction of documents and sentences before the information extraction step. It is meaningful that we provided a method that precision performance can be maintained even in actual web environment. The information extraction problem for the knowledge base expansion has the characteristic that it can not guarantee whether the document includes the correct answer because it is aimed at the unstructured document existing in the real web. When the question answering is performed on a real web, previous machine reading comprehension studies has a limitation that it shows a low level of precision because it frequently attempts to extract an answer even in a document in which there is no correct answer. The policy that predicts the suitability of document and sentence information extraction is meaningful in that it contributes to maintaining the performance of information extraction even in real web environment. The limitations of this study and future research directions are as follows. First, it is a problem related to data preprocessing. In this study, the unit of knowledge extraction is classified through the morphological analysis based on the open source Konlpy python package, and the information extraction result can be improperly performed because morphological analysis is not performed properly. To enhance the performance of information extraction results, it is necessary to develop an advanced morpheme analyzer. Second, it is a problem of entity ambiguity. The information extraction system of this study can not distinguish the same name that has different intention. If several people with the same name appear in the news, the system may not extract information about the intended query. In future research, it is necessary to take measures to identify the person with the same name. Third, it is a problem of evaluation query data. In this study, we selected 400 of user queries collected from SK Telecom 's interactive artificial intelligent speaker to evaluate the performance of the information extraction system. n this study, we developed evaluation data set using 800 documents (400 questions * 7 articles per question (1 Wikipedia, 3 Naver encyclopedia, 3 Naver news) by judging whether a correct answer is included or not. To ensure the external validity of the study, it is desirable to use more queries to determine the performance of the system. This is a costly activity that must be done manually. Future research needs to evaluate the system for more queries. It is also necessary to develop a Korean benchmark data set of information extraction system for queries from multi-source web documents to build an environment that can evaluate the results more objectively.