한국지능정보시스템학회 2001년도 The Pacific Aisan Confrence On Intelligent Systems 2001
/
pp.285-291
/
2001
This paper describes a natural language question answering system that can be used by students in getting as solution to their queries. Unlike AI question answering system that focus on the generation of new answers, the present system retrieves existing ones from question-answer files. Unlike information retrieval approaches that rely on a purely lexical metric of similarity between query and document, it uses a semantic knowledge base (WordNet) to improve its ability to match question. Paper describes the design and the current implementation of the system as an intelligent tutoring system. Main drawback of the existing tutoring systems is that the computer poses a question to the students and guides them in reaching the solution to the problem. In the present approach, a student asks any question related to the topic and gets a suitable reply. Based on his query, he can either get a direct answer to his question or a set of questions (to a maximum of 3 or 4) which bear the greatest resemblance to the user input. We further analyze-application fields for such kind of a system and discuss the scope for future research in this area.
Kang Yu-Hwan;Shin Seung-Eun;Ahn Young-Min;Seo Young-Hoon
International Journal of Contents
/
제2권1호
/
pp.17-21
/
2006
In this paper, we describe a concept-based question-answering system in which concept rather than keyword itself makes an important role on both question analysis and answer extraction. Our idea is that concepts occurred in same type of questions are similar, and if a question is analyzed according to those concepts then we can extract more accurate answer because we know the semantic role of each word or phrase in question. Concept frame is defined for each type of question, and it is composed of important concepts in that question type. Currently the number of question type is 79 including 34 types for person, 14 types for location, and so on. We experiment this concept-based approach about questions which require person s name as their answer. Experimental results show that our system has high accuracy in answer extraction. Also, this concept-based approach can be used in combination with conventional approaches.
본 논문에서는 질의 응답 시스템의 성능 향상을 위한 질의문 심층 분석을 제안한다. 일반적인 질의응답 시스템들은 사용자의 자연언어 질의의 의미를 분석하지 않기 때문에 정확한 정답을 제공하는 것이 어렵다. 질의문 심층 분석은 의미자질 추출 문법과 자연언어 질의 특성을 이용하여 사용자의 질의를 의미적으로 분석하고, 의미자질들을 추출한다. 의미자질 추출 문법과 자연언어 질의 특성은 사용자 질의의 의미와 구문 구조를 반영하기 위해 의미자질과 형식형태소로 표현된다. 웹에서 추출한 세부 정답 유형이 '인물'인 100개의 질의에 대한 실험을 통해, 비교적 짧지만 사용자의 질의 의도를 충분히 표현하고 있는 자연언어 질의에 대해 질의문 심층 분석을 수행함으로써 사용자의 질의 의도를 분석하고, 의미자질들을 추출할 수 있음을 보였다.
Question Answering (QA) 서비스는 사용자의 자연어 질의에 대응하는 정확한 답변을 제공하는 시스템이다. 본 연구는 특정 도메인에 관련한 사용자들의 질문에 대해 QA 서비스가 자동으로 대응하는 방법에 관한 연구이다. 이를 수행하기 위하여 사용자의 자연어 질문을 이해하고, 정형 데이터 및 비정형 데이터로부터 사용자 질문에 적합한 답변을 도출하여 제공하는 방법을 제시한다. 실험 결과 top 1 accuracy 68%, top 5 accuracy 77% 결과를 얻었다. 또한 본 논문은 QA 시스템 내부 모듈이 전체 accuracy에 미치는 영향에 대해서도 기술하였다.
질문 분류는 질의응답과정에서 질문자의 정보요구를 이해하고 주어진 질문에 대해 적합한 답변을 제공하기 위한 중요한 방법 중의 하나이다. 이 연구의 목적은 온라인 및 도서관에서 활용 가능한 질의응답 서비스의 질문 분류체계를 조사해보고, 각 질의응답서비스의 유형별로 어떠한 특징이 있는지 살펴보고자 하였다. 이를 위해, 도서관의 참고서비스 및 온라인 상의 소셜 레프런스, 자동 질의응답 시스템을 대상으로 질문을 어떻게 분류하여 활용하고 있는지를 문헌 조사를 통해 살펴보고 종합하여 질문의 유형을 정리하였다.
본 논문에서는 개념 기반 질의-응답 시스템에서의 정답 추출 방법에 대하여 기술한다. 개념 기반 질의-응답 시스템은 개념 정보를 이용하여 해답을 추출하는 시스템을 말하며, 질의분석을 통해 분류되고 추출된 개념 그에 따른 정답 추출 규칙을 이용하여 정답을 추출하는 방법과 시스템에 대하여 연구하였다. 질의에 대한 정답이 들어 있는 문서들을 분석하여 정답 추출 규칙을 작성한다. 규칙은 개념과 구문정보를 포함하고 있으며 작성된 규칙을 통하여 문서로부터 정답후보를 생성하고 정답을 선택한다.
본 논문에서는 정의형 질의응답 시스템을 위한 정답 패턴에 대하여 기술한다. 정의형 질의응답 시스템은 정의형 질의에 대한 정답으로 단답형 정답이 아닌 서술형 정답을 제공하기 때문에, 정답 추출 방법이 일반적인 단답형 정답 추출 방법과 다르다. 정의형 정답 패턴을 이용한 정의형 정답 추출은 의미 분석없이 정확한 정의형 정답을 추출할 수 있다. 정의형 정답 패턴은 정확한 정답 추출을 위해 정답 패턴과 패턴별 제약 규칙, 우선순위로 구성된다. 정의형 정답 학습 코퍼스로부터 정답 패턴을 추출하고, 각각의 정답 패턴에 대한F-measure에 따라 최적화하여 패턴별 제약 규칙을 구성한다. 마지막으로 정확률과 정답 패턴 구문 구조를 이용하여 우선순위를 결정한다. 제안한 정의형 정답 패턴을 이용한 정의형 정답 추출은 실험 코퍼스에 대해 정확률 0.8207, 재현율 0.9268, F-measure 0.8705를 보였다. 이것은 제안한 방법이 정의형 질의응답 시스템에 효율적으로 사용될 수 있음을 의미한다.
자연어 질문에 대해 답변을 찾아 제공하는 질의응답시스템의 오류에 가장 큰 영향을 미치는 요소 중 하나가 질문으로 정답을 포함하고 있을 만한 문서나 단락을 검색하는 단계이다. 검색의 성능 향상을 위해서는 정답 포함 문서 및 단락의 특징을 잘 이해해야 한다. 본 논문은 질문, 정답 포함 문서, 정답 미포함 문서로 구성된 말뭉치를 사용하여 정답 문서에는 질문 단어가 얼마나 많이 출현하는지, 출현 위치는 어떻게 분포하는지, 질문과 정답 문서의 주제는 얼마나 유사한지 등을 실험적으로 분석한다. 이를 통해 질의응답시스템을 위한 기존의 검색 연구 결과들에 대한 원인을 설명하고 효과적인 검색 단계의 필요 요소에 관해 논의한다.
본 논문은 대규모 지식베이스와 언어 자원의 부족 문제를 해결하기 위한 동사의 구문 관계 정보를 이용한 한국어 질의-응답 시스템에 대해 기술한다. 구문 관계 정보는 동사의 원형, 사용 패턴, 각 문장 성분들의 의미 속성, 유의 동사 등의 정보를 담고 있다. 문장 및 구에 대한 구문분석은 구문관계 정보에 나타난 동사에 의존적인 문장 성분들의 의미속성과 동사의 일반적인 사용 패턴을 활용한다. 또한 정답후보 문장들의 구문분석을 위해 구문 관계 정보를 사용하고, 질의문의 격 슬롯(case slot)으로부터 정답을 찾기 위해 구문관계 정보를 사용한다. 실험에서 동사의 구문 관계 정보의 이용이 대규모 지식베이스와 언어 자원의 부족 문제를 해결하기 위해 한국어 질의-응답 시스템에 효율적으로 활용될 수 있음을 보였다.
질의 응답 시스템은 사용자의 질의에 대해 다른 사용자의 응답을 저장하고 보여 주는 시스템이다. 사용자의 질의를 만족시키는 응답을 정확히 검색하고자 노력하는 많은 연구들이 있었지만 이에는 근본적인 한계가 있었다. 따라서 질의 응답 시스템에서는 보조적인 방법으로 사용자의 질의를 만족시킬 가능성이 높은 다른 질의를 추천하는 방법이 사용되고 있다. 이전 연구에서 내용적으로 포함하는 정도가 큰 질의들을 하위 질의로서 추천하는 내용 기반 추천 방법으로서 퍼지 관계 곱 연산자(fuzzy relational product operator)를 사용하는 방법이 제안되었고, 기본적인 함의 연산자로서 Kleene-Dienes 연산자가 사용되었다. 하지만 Kleene-Dienes 연산자는 설명의 의미적 포함관계를 고려한 방법이 아니기 때문에 질의응답의 의미적 포함 정도를 계산하기에 적합하지 않다. 본 논문에서는 두 질의에 대한 설명의 의미적 포함관계를 고려한 새로운 함의 연산자를 제안한다. 새로운 연산자는 어떤 질의 및 응답 들이 다른 질의와 그 응답들에 의미적으로 포함되는 정도를 계산하도록 설계되었다. 실험을 통하여 새로운 함의 연산자를 적용한 퍼지 관계곱 연산자를 사용하면 사용자가 원하는 지식을 추천할 가능성이 높아짐을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.