• Title/Summary/Keyword: Query generation

Search Result 118, Processing Time 0.027 seconds

A Study on Methodology for Efficient Ontology Reasoning in the Semantic Web (시맨틱 웹에서의 효율적인 온톨로지 추론을 위한 개선방법에 관한 연구)

  • Hong, June-Seok
    • The Journal of Society for e-Business Studies
    • /
    • v.13 no.3
    • /
    • pp.85-101
    • /
    • 2008
  • The semantic web is taken as next generation standards of information exchange on the internet to overcome the limitations of the current web. To utilize the information on the semantic web, tools are required the functionality of query search and reasoning for the ontology. However, most of semantic web management tools cannot efficiently support the search for the complex query because they apply Triple-based storage structure about RDF metadata. We design the storage structure of the ontology in corresponding with the structure of ontology data and develop the search system(SMART-DLTriple) to support complex query search efficiently in this research. The performance of the system using new storage structure is evaluated to compare with the popular semantic web management systems. The proposed method and system make a contribution to enhancement of a practical ontology reasoning systems due to improved performance of the ontology search.

  • PDF

Information Retrieval in Construction Hazard Identification (건설 위험 식별을 위한 정보 검색)

  • Kim, Hyun-Soo;Lee, Hyun-Soo;Park, Moon-Seo;Hwang, Sung-Joo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.2
    • /
    • pp.53-63
    • /
    • 2011
  • The repetitive occurrence of similar accident is one of the biggest feature in construction disasters. Similar accident cases provide direct information for finding risk of scheduled activities and planning safety countermeasure. Many systems are developed to retrieve and use past accident cases by researchers. However, these researches have some limitations for performing too much retrieval to obtain results considering construction site conditions or not reflecting characteristics of safety planning steps or both. To overcome these limitations, this study proposes accident case retrieval system that can search similar accident cases. It also helps safety planning using information retrieval and building information modeling. The retrieval system extracts BIM objects and composes a query set combining BIM objects with site information DB. With past accident cases DB compares a query set, it seeks the most similar case. And results are provided to safety managers. Based on results of this study, safety managers can reduce excessive query generation. Furthermore, they can be easy to recognize risk of a construction site by obtaining coordinations of objects where similar accidents occurred.

Graph Database Benchmarking Systems Supporting Diversity (다양성을 지원하는 그래프 데이터베이스 벤치마킹 시스템)

  • Choi, Do-Jin;Baek, Yeon-Hee;Lee, So-Min;Kim, Yun-A;Kim, Nam-Young;Choi, Jae-Young;Lee, Hyeon-Byeong;Lim, Jong-Tae;Bok, Kyoung-Soo;Song, Seok-Il;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.12
    • /
    • pp.84-94
    • /
    • 2021
  • Graph databases have been developed to efficiently store and query graph data composed of vertices and edges to express relationships between objects. Since the query types of graph database show very different characteristics from traditional NoSQL databases, benchmarking tools suitable for graph databases to verify the performance of the graph database are needed. In this paper, we propose an efficient graph database benchmarking system that supports diversity in graph inputs and queries. The proposed system utilizes OrientDB to conduct benchmarking for graph databases. In order to support the diversity of input graphs and query graphs, we use LDBC that is an existing graph data generation tool. We demonstrate the feasibility and effectiveness of the proposed scheme through analysis of benchmarking results. As a result of performance evaluation, it has been shown that the proposed system can generate customizable synthetic graph data, and benchmarking can be performed based on the generated graph data.

A study on Implementation of English Sentence Generator using Lexical Functions (언어함수를 이용한 영문 생성기의 구현에 관한 연구)

  • 정희연;김희연;이웅재
    • Journal of Internet Computing and Services
    • /
    • v.1 no.2
    • /
    • pp.49-59
    • /
    • 2000
  • The majority of work done to date on natural language processing has focused on analysis and understanding of language, thus natural language generation had been relatively less attention than understanding, And people even tends to regard natural language generation CIS a simple reverse process of language understanding, However, need for natural language generation is growing rapidly as application systems, especially multi-language machine translation systems on the web, natural language interface systems, natural language query systems need more complex messages to generate, In this paper, we propose an algorithm to generate more flexible and natural sentence using lexical functions of Igor Mel'uk (Mel'uk & Zholkovsky, 1988) and systemic grammar.

  • PDF

Natural Language Processing Model for Data Visualization Interaction in Chatbot Environment (챗봇 환경에서 데이터 시각화 인터랙션을 위한 자연어처리 모델)

  • Oh, Sang Heon;Hur, Su Jin;Kim, Sung-Hee
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.9 no.11
    • /
    • pp.281-290
    • /
    • 2020
  • With the spread of smartphones, services that want to use personalized data are increasing. In particular, healthcare-related services deal with a variety of data, and data visualization techniques are used to effectively show this. As data visualization techniques are used, interactions in visualization are also naturally emphasized. In the PC environment, since the interaction for data visualization is performed with a mouse, various filtering for data is provided. On the other hand, in the case of interaction in a mobile environment, the screen size is small and it is difficult to recognize whether or not the interaction is possible, so that only limited visualization provided by the app can be provided through a button touch method. In order to overcome the limitation of interaction in such a mobile environment, we intend to enable data visualization interactions through conversations with chatbots so that users can check individual data through various visualizations. To do this, it is necessary to convert the user's query into a query and retrieve the result data through the converted query in the database that is storing data periodically. There are many studies currently being done to convert natural language into queries, but research on converting user queries into queries based on visualization has not been done yet. Therefore, in this paper, we will focus on query generation in a situation where a data visualization technique has been determined in advance. Supported interactions are filtering on task x-axis values and comparison between two groups. The test scenario utilized data on the number of steps, and filtering for the x-axis period was shown as a bar graph, and a comparison between the two groups was shown as a line graph. In order to develop a natural language processing model that can receive requested information through visualization, about 15,800 training data were collected through a survey of 1,000 people. As a result of algorithm development and performance evaluation, about 89% accuracy in classification model and 99% accuracy in query generation model was obtained.

Automatic Generation of Issue Analysis Report Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 이슈 분석보고서 자동 생성)

  • Heo, Jeong;Lee, Chung Hee;Oh, Hyo Jung;Yoon, Yeo Chan;Kim, Hyun Ki;Jo, Yo Han;Ock, Cheol Young
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.3 no.12
    • /
    • pp.553-564
    • /
    • 2014
  • In this paper, we propose the system for automatic generation of issue analysis report based on social big data mining, with the purpose of resolving three problems of the previous technologies in a social media analysis and analytic report generation. Three problems are the isolation of analysis, the subjectivity of experts and the closure of information attributable to a high price. The system is comprised of the natural language query analysis, the issue analysis, the social big data analysis, the social big data correlation analysis and the automatic report generation. For the evaluation of report usefulness, we used a Likert scale and made two experts of big data analysis evaluate. The result shows that the quality of report is comparatively useful and reliable. Because of a low price of the report generation, the correlation analysis of social big data and the objectivity of social big data analysis, the proposed system will lead us to the popularization of social big data analysis.

Linear Resource Sharing Method for Query Optimization of Sliding Window Aggregates in Multiple Continuous Queries (다중 연속질의에서 슬라이딩 윈도우 집계질의 최적화를 위한 선형 자원공유 기법)

  • Baek, Seong-Ha;You, Byeong-Seob;Cho, Sook-Kyoung;Bae, Hae-Young
    • Journal of KIISE:Databases
    • /
    • v.33 no.6
    • /
    • pp.563-577
    • /
    • 2006
  • A stream processor uses resource sharing method for efficient of limited resource in multiple continuous queries. The previous methods process aggregate queries to consist the level structure. So insert operation needs to reconstruct cost of the level structure. Also a search operation needs to search cost of aggregation information in each size of sliding windows. Therefore this paper uses linear structure for optimization of sliding window aggregations. The method comprises of making decision, generation and deletion of panes in sequence. The decision phase determines optimum pane size for holding accurate aggregate information. The generation phase stores aggregate information of data per pane from stream buffer. At the deletion phase, panes are deleted that are no longer used. The proposed method uses resources less than the method where level structures were used as data structures as it uses linear data format. The input cost of aggregate information is saved by calculating only pane size of data though numerous stream data is arrived, and the search cost of aggregate information is also saved by linear searching though those sliding window size is different each other. In experiment, the proposed method has low usage of memory and the speed of query processing is increased.

PC-SAN: Pretraining-Based Contextual Self-Attention Model for Topic Essay Generation

  • Lin, Fuqiang;Ma, Xingkong;Chen, Yaofeng;Zhou, Jiajun;Liu, Bo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.8
    • /
    • pp.3168-3186
    • /
    • 2020
  • Automatic topic essay generation (TEG) is a controllable text generation task that aims to generate informative, diverse, and topic-consistent essays based on multiple topics. To make the generated essays of high quality, a reasonable method should consider both diversity and topic-consistency. Another essential issue is the intrinsic link of the topics, which contributes to making the essays closely surround the semantics of provided topics. However, it remains challenging for TEG to fill the semantic gap between source topic words and target output, and a more powerful model is needed to capture the semantics of given topics. To this end, we propose a pretraining-based contextual self-attention (PC-SAN) model that is built upon the seq2seq framework. For the encoder of our model, we employ a dynamic weight sum of layers from BERT to fully utilize the semantics of topics, which is of great help to fill the gap and improve the quality of the generated essays. In the decoding phase, we also transform the target-side contextual history information into the query layers to alleviate the lack of context in typical self-attention networks (SANs). Experimental results on large-scale paragraph-level Chinese corpora verify that our model is capable of generating diverse, topic-consistent text and essentially makes improvements as compare to strong baselines. Furthermore, extensive analysis validates the effectiveness of contextual embeddings from BERT and contextual history information in SANs.

An Efficient ROLAP Cube Generation Scheme (효율적인 ROLAP 큐브 생성 방법)

  • Kim, Myung;Song, Ji-Sook
    • Journal of KIISE:Databases
    • /
    • v.29 no.2
    • /
    • pp.99-109
    • /
    • 2002
  • ROLAP(Relational Online Analytical Processing) is a process and methodology for a multidimensional data analysis that is essential to extract desired data and to derive value-added information from an enterprise data warehouse. In order to speed up query processing, most ROLAP systems pre-compute summary tables. This process is called 'cube generation' and it mostly involves intensive table sorting stages. (1) showed that it is much faster to generate ROLAP summary tables indirectly using a MOLAP(multidimensional OLAP) cube generation algorithm. In this paper, we present such an indirect ROLAP cube generation algorithm that is fast and scalable. High memory utilization is achieved by slicing the input fact table along one or more dimensions before generating summary tables. High speed is achieved by producing summary tables from their smallest parents. We showed the efficiency of our algorithm through experiments.

On the Generation of Line Balanced Assembly Sequences Based on the Evaluation of Assembly Work Time Using Neural Network (신경회로망기법에 의한 조립작업시간의 추정 및 라인밸런싱을 고려한 조립순서 추론)

  • 신철균;조형석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.339-350
    • /
    • 1994
  • This paper presents a method for automatic generation of line balanced assembly sequences based on disassemblability and proposes a method of evaluating an assembly work time using neural networks. Since a line balancing problem in flexible assembly system requires a sophisticated planning method, reasoning about line balanced assembly sequences is an important field of concern for planning assembly lay-out. For the efficient inference of line balanced assembly sequences, many works have been reported on how to evaluate an assembly work time at each work station. However, most of them have some limitations in that they use cumbersome user query or approximated assembly work time data without considering assembly conditions. To overcome such criticism, this paper proposes a new approach to mathematically verify assembly conditions based on disassemblability. Based upon the results, we present a method of evaluating assembly work time using neural networks. The proposed method provides an effective means of solving the line balancing problem and gives a design guidance of planning assembly lay-out in flexible assembly application. An example study is given to illustrate the concepts and procedure of the proposed scheme.