• Title/Summary/Keyword: Quench characteristics

Search Result 220, Processing Time 0.031 seconds

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

Analysis on Current Limiting Characteristics of Flux-Lock Type SFCL Using a Transformer Winding (변압기 권선을 이용한 자속구속형 초전도 전류제한기의 전류제한 특성 분석)

  • Han, Tae-Hee;Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.136-140
    • /
    • 2011
  • The fault current limiting characteristics of the flux-lock type superconducting fault current limiter (SFCL) using a transformer winding were investigated. The suggested flux-lock type SFCL consists of two parallel connected coils on an iron core and the transformer winding connected in series with one of two coils. In this SFCL, the high-TC superconducting (HTSC) element was connected with the secondary side of the transformer. The short-circuit experimental devices to analyze the fault current limiting characteristics of the flux-lock type SFCL using the transformer winding were constructed. Through the short-circuit tests, the flux-lock type SFCL using transformer winding was shown to perform more effective fault current limiting operation compared to the previous flux-lock type SFCL without the transformer winding from the viewpoint of the quench occurrence and the recovery time of the HTSC element.

Fabrication and Characteristics of 30〔kVA〕 Superconducting Generator (30(kVA) 초전도발전기 제작 및 특성)

  • ;;;;;;;I. Muta;I. Hoshino
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.2
    • /
    • pp.32-38
    • /
    • 2001
  • A 30[kVA] superconducting generator (SCG) is built and tested at Korea Electrotechnology Research Institute (KERI) in Korea. This superconducting generator has an air-gap winding instead of the typical steel teeth structure. The rotor has 4 field coils of race-track type with NbTi superconducting wired. The rotor is composed of two dampers and a liquid helium composed of two dampers and a liquid helium container in which the field poles reside. The space between the outermost damper and the container is vacuum insulated. A ferrofluid seal is used between the stationary part connected to the couping and the rotor. A helium transfer coupling(HTC) has 3 passages of the recovered heilum gas and a gas flow control system. The open circuit test and sustained short circuit test are preformed to obtain the open circuit characteristics (OCC) and short circuit characteristics (SCC) Also. the test results usder the light load (up to 3.6[kW]) are given. The structure, manufacturing and basis test of the 30[kVA]SCG are discussed.

  • PDF

Characteristics of a Hybrid-type SFCL with Serial and Parallel Connection of Secondary Circuit (2차회로의 직.병렬연결에 따른 하이브리드형 초전도 한류기의 특성)

  • Cho, Yong-Sun;Park, Hyoung-Min;Nam, Goung-Hyun;Lee, Na-Young;Han, Tae-Hee;Choi, Choi-Sang
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.393-395
    • /
    • 2006
  • We investigated the operational characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the serial and parallel connections of secondary circuits. The hybrid-type SFCL consists of a transformer, which has a primary winding and several secondary windings with $YBa_2Cu_3O_7$ films connected in series and parallel. In order to increase the capacity of the SFCL, the serial connection between each current limiting unit is necessary. The hybrid-type SFCL with the serial connection in secondary circuits could show superior characteristics than those of the parallel connections in the current limiting and quench time. The resistances generated in the superconducting units were also lowered at the parallel connections. We confirmed that the parallel connection reduced the power burden of each superconducting unit under the same conditions because of the simultaneous quenching between superconducting units.

  • PDF

Analysis of Partial Discharge Characteristics at Cryogenic Temperature below 77K (77K 이하 극저온 상에서의 부분방전 특성 분석)

  • Lee, Sang-Hwa;Kim, Bok-Yeol;Shin, Woo-Ju;Lee, Bang-Wook;Koo, Ja-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1562-1563
    • /
    • 2011
  • Partial discharge measurement is one of the effective diagnostic techniques to predict abnormal high voltage dielectric insulation conditions of the electric equipments. Recently partial discharge diagnostic techniques were also utilized to evaluate the cryogenic dielectric insulation of high temperature superconducting electric equipment in liquid nitrogen. Generally, liquid nitrogen at 77 K is used used as the cryogenic and dielectric media for many high temperature superconducting high voltage applications. When a quench in the superconductor occurs, bubbles are generated which can affect the dielectric properties of the liquid nitrogen. So in order to reduce the bubble formation, subcooled nitrogen was also employed for this purpose. In this work, investigation of partial discharge characteristics of subcooled liquid nitrogen were conducted in order to clarify the retardation of partial discharge initiation voltage according to the different subcooling temperature of liquid nitrogen. And also the relation of partial discharge phenomena and the activities of bubbles were analyzed. It was observed that PD inception voltages shows rather different characteristics according to the decrease of subcooling temperature and the activities of bubbles were strongly influenced by temperature of the subcooled liquid nitrogen.

  • PDF

Characteristics of Matrix Type SFCL with $2{\times}3$ Array According to the Trigger Coil and Shunt Resistance ($2{\times}3$구조의 매트릭스형 초전도 한류기의 트리거 코일 및 션트 저항에 따른 특성)

  • Jung, Byung-Ik;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.1
    • /
    • pp.85-89
    • /
    • 2009
  • We investigated the quench characteristics in accordance with increase of turns number of trigger coil and shunt resistance of matrix-type superconducting fault current limiter (SFCL) with $2{\times}3$ array. The matrix-type SFCL consists of the trigger part to apply magnetic field and the current-limiting part to limit fault current. The fault current limiting characteristics according to the increase of magnetic field and applied voltage were nearly same. This is because the application of magnetic field hasn't an affect on total impedance of the SFCL. When turns number of a reactor increased, the voltage difference between two superconducting units in the current-limiting part according was decreased. The resistance difference generated in two superconducting units was also decreased. Therefore, we confirmed that the differences of the critical behaviors between superconducting units were reduced by application of magnetic field. By this results, we could decide the optimum turns number of reactor to apply magnetic field.

Operating Characteristics of Hybrid Type Superconducting Fault Current Limiter (하이브리드형 초전도 한류기의 동작 특성)

  • Cho, Yong-Sun;Nam, Gueng-Hyun;Lim, Sung-Hun;Choi, Hyo-Sang
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.6
    • /
    • pp.255-258
    • /
    • 2006
  • We investigated the operating characteristics of the hybrid-type superconducting fault current limiter (SFCL) according to the inductance of secondary windings. The hybrid type SFCL consists of a transformer that has a primary winding and a secondary winding with serially connected $YBa_2Cu_3O_7$ (YBCO) films. The resistive-type SFCL has difficulty when it comes to raising the capacity of the SFCL due to slight differences of critical current densities between units and structure of the SFCL. The hybrid-type SFCL with closed-loop is able to achieve capacity increase through the electrical isolation and reduction of the inductance of the secondary winding with a superconducting element of the same critical current. On the other hand, the current limiting characteristics were nearly identical in the hybrid-type SFCL with open-loop compared to closed-loop, but quench time was longer than the hybrid-type SFCL with closed-loop. We confirmed that the capacity of the SFCL was increased effectively by the reduced inductance of the secondary winding. In addition, the power burden of the system also could be lowered by reducing the inductance of secondary winding.

Fundamental characteristic analysis on 6 T-class high-temperature superconducting no-insulation magnet using turn-distributed equivalent circuit model

  • Liu, Q.;Choia, J.;Sim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.44-48
    • /
    • 2021
  • In order to obtain ultra-high resolution MRI images, research and development of 11 T or higher superconducting magnets have been actively conducted in the world, recently. The high-temperature superconductor (HTS), first discovered in 1986, was very limited in industrial application until mid-2010, despite its high critical current characteristics in the high magnetic field compared to the low-temperature superconductor. This is because HTS magnets were unable to operate stably due to the thermal damage when a quench occurred. With the introduction of no-insulation (NI) HTS magnet winding technology that does not burn electrically, it could be expected that the HTS magnets are dramatically reduced in weight, volume, and cost. In this paper, a 6 T-class NI HTS magnet for basic characteristic analysis was designed, and a distributed equivalent circuit model of the NI coils was configured to analyze the charging current characteristics caused by excitation current, and the charge delay phenomenon and loss were predicted through the development of a simulation model. Additionally, the critical current of the NI HTS magnets was estimated, considering the magnetic field, its angle and temperature with a given current. The loss due to charging delay characteristics was analyzed and the result was shown. It is meaningful to obtain detailed operation technology to secure a stable operation protocol for a 6T NI HTS magnet which is actually manufactured.

Quench Characteristics in Coated Conductor according to Applied Times of Voltage (Coated Conductor의 전압 인가 시간에 따른 퀜치 특성)

  • Park, Chung-Ryul;Kwon, Na-Young;Yim, Seong-Woo;Kim, Rye-Rim;Hyun, Ok-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.348-348
    • /
    • 2009
  • 본 논문에서는 최근 한류용 소자로 널리 이용되고 있는 여러 가지 Coated Conductor들에 대한 렌치 특성을 조사하였다. 이를 위해 전원전압을 증가시키면서 임의의 시간동안 퀜치 특성을 조사하였으며, 이는 한류소자의 한류시간별 가용전압을 산정하는데 있어 중요한 지표가 된다.

  • PDF

Modeling and Simulation of Superconducting Transformer using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 초전도 변압기의 모델링과 시뮬레이션)

  • 임채형;박민원;유인근
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.1
    • /
    • pp.33-38
    • /
    • 2004
  • This paper presents an effective simulation method for the high temperature superconducting (HTS) transformer using PSCAD/ EMTDC. Although researches and developments are performed for the HTS technologies, problems such as AC loss and quench phenomenon need to be solved for efficient design of HTS transformer. In addition, pre-study on the HTS transformer is a sort of time and cost consuming work, thus it is very worthy or being analyzing the characteristics of the HTS transformer in advance through a proper simulation method. It is very important to analyze the HTS devices by the simulation for seeking suitable and reasonable parameters for the practical application of those apparatuses in advance. A software- based component is suggested for- the simulation of the HTS transformer using PSCAD/ EMTDC and the numerical results are analyzed in detail in this paper.