• Title/Summary/Keyword: Quay Wall

Search Result 63, Processing Time 0.023 seconds

Behavior Analysis on Earthquake-Induced Deformation of Quay Wall and Apron in Ground at Youngilman Port Considering Drainage Condition Using FEM Analysis (FEM 해석에 의한 지반배수조건에 따른 지진 시 영일만항의 케이슨식 안벽 및 배후지의 거동 분석)

  • Lee, Hak-Ju;Kang, Gi-Chun;Hwang, Woong-Ki;Lee, Min-Sun;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.386-394
    • /
    • 2019
  • In this study, according to drainage condition (undrained and drained) in ground, the settlement and horizontal displacement of caisson quay wall and apron in Yeongilman port due to excess pore water pressure in ground induced by the magnitude 5.4 earthquake in Pohang on November 15, 2017. In general, seismic response analysis was carried out under undrained drainage condition, but in this study, drain drainage analysis was conducted to estimate displacement during earthquake as well as an additional displacement due to dissipation of excess pore water pressure after earthquake. The result of after earthquake can not be known under undrained drainage condition. Results cleary showed that the behavior of structure and ground was dependent on drainage condition in ground. Especially, based on the drained drainage condition, the additional displacement was clearly detected due to dissipation of excess pore water pressure after earthquake. Which indicates that both results are different to drainage condition in ground, and therefore, drainage condition analysis is necessary to accurately estimate the behavior of ground and structure in seismic response analysis.

Estimation on Filling Performance of Thixotropic Grout for Increasing Front-Water Depth of Gravity-Type Quay Wall (중력식 안벽 구조물의 증심 시공을 위한 가소성 그라우트의 충진성능 평가)

  • Jang, Kyong-Pil;Ryu, Yong-Sun;Kwon, Seung-Hee;Han, Woon-Woo;Oh, Myong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.6
    • /
    • pp.169-177
    • /
    • 2017
  • Recently, as the size of transportation vessels has increased, there is a growing need for securing the front-water depths of existing port facilities. The method of deepening front-water depth is securing the depth of the port facility, and it is reinforced by grouting after excavating the rubble-mound to the required depth. The purpose of this study is to investigate the reinforcing performance and filling performance of thixotropic grout as a grouting material for reinforcing rubble-mound. Compressive strength tests were carried out for two types of thixotropic grout, and 5 specimens with a diameter of 400 mm and a height of 530 mm were manufactured and evaluated for filling performance. The required strength of reinforced rubble-mound required to ensure the safety of the structure is 6 MPa. All the thixotropic grouts used in this study were found to satisfy the required strength over 9 MPa at 7 days of age. As a result of visual observation of filling state of the filling performance test specimens, it was confirmed that the thixotropic grout was well filled up to the desired fillet height.

Development of Reliability-Based Design Program based on the MATLAB GUI Environment (MATLAB GUI 환경기반 신뢰성 설계기법의 개발)

  • Jeong, Shin-Taek;Ko, Dong-Hui;Park, Tae-Hun;Kim, Jeong-Dae;Cho, Hong-Yeon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.6
    • /
    • pp.415-422
    • /
    • 2010
  • Development of the reliability-based design program in the GUI environment is inadequate for engineers familiar with the deterministic design to deal with the international design criterion based on the probabilistic design. In this study, the design program based on the GUI environment is developed in order to more efficiently input the design factor and more easily carry out the design works. The GUI environment is the GUIDE (Graphic User Interface Development Environment) tool supported by the latest MATALB version 7.1. In order to test the model reliability, the probabilities of failure (POF) on the breakwater armor block (AB) and gravity quay-wall (QW) in the sliding mode are computed using the model in the Level II and Level III. The POF are 55.4~55.7% for breakwater AB and 0.0006~0.0007% for gravity QW. A non-GUI environment program results of the POF are 55.6% for breakwater AB and 0.0018% for gravity QW. In comparison, the POF difference is negligible for breakwater AB because the exact input design parameters are available, whereas the large POF difference, but within the same order, for gravity QW can be explained by the difference of the input design factors because of the poor input data information.

A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis (2차원 유효응력 해석에 의한 지진시 포항 안벽구조물의 변형 사례 분석)

  • Kim, Seungjong;Hwang, Woong-Ki;Kim, Tae-Hyung;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.15-27
    • /
    • 2019
  • The purpose of this study is to investigate the mechanism about damages occurring at quay wall and backfill in Youngilman Port during Pohang earthquake (M5.4) on November 15, 2017. In the field investigation, the horizontal displacement of the caisson occurred between 5 cm and 15 cm, and the settlement at backfill occurred higher than 10 cm. 2D-effective Stress Analysis was performed to clarify the mechanism for the damage. The input earthquake motion used acceleration ($3.25m/s^2$) measured at bedrock of Pohang habor. Based on a numerical analysis, it was found that the effective stress decreased due to the increase of excess pore pressure in the backfill ground and the horizontal displacement of the caisson occurred by about 14 cm, and the settlement occurred by about 3 cm. In backfill, the settlements occurred between 6 cm and 9 cm. This is similar to field investigation results. Also, it was found that the backfill soil was close to the Mohr-Coulomb failure line due to the cyclic loading from the effective stress path and the stress-strain behavior. It may be related to decreasing of bearing capacity induced by the reduction of effective stress caused by the increase of the excess pore water pressure.

A Study on Earth Pressure Properties of Granulated Blast Furnace Slag Used as Back-fill Material (뒷채움재로 이용한 고로 수쇄슬래그의 토압특성에 관한 실험적 연구)

  • Baek, Won-Jin;Lee, Kang-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.119-127
    • /
    • 2006
  • Granulated Blast Furnace Slag (GBFS) is produced in the manufacture process of pig-iron and shows a similar particle formation to that of natural sea sand and also shows light weight, high shear strength, well permeability, and especially has a latent hydraulic property by which GBFS is solidified with time. Therefore, when GBFS is used as a backfill material of quay or retaining walls, the increase of shear strength induced by the hardening is presumed to reduce the earth pressure and consequently the construction cost of harbor structures decreases. In this study, using the model sand box (50 cm$\times$50 cm$\times$100 cm), the model wall tests were carried out on GBFS and Toyoura standard sand, in which the resultant earth pressure, a wall friction and the earth pressure distribution at the movable wall surface were measured. In the tests, the relative density was set as Dr=25, 55 and 70% and the wall was rotated at the bottom to the active earth pressure side and followed by the passive side. The maximum horizontal displacement at the top of the wall was set as ${\pm}2mm$. By these model test results, it is clarified that the resultant earth pressure obtained by using GBFS is smaller than that of Toyoura sand, especially in the active-earth pressure.

Verification of Similitude Law for 1g Shaking Table Tests through Modeling of Models (모형의 모형화 기법을 이용한 1g 진동대 실험을 위한 상사법칙의 유효성 검증)

  • Hwang Jae-Ik;Kim Sung-Ryul;Jang In-Sung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.91-103
    • /
    • 2004
  • A series of shaking table model tests were performed to verify the validity of similitude law, which is suggested by lai (1989) to simulate the dynamic behavior of soil-fluid-structure system for is shaking table tests. In the tests, the similitude law suggested by lai was applied to determine the length and the time scaling factors. Also, the steady state concept was used in determining the density of model backfill soil, which is a key factor in simulating the development of excess pore pressure during shaking. The similitude law was verified by checking whether three different sizes of quay walls show the identical behavior or not. The similar responses of acceleration, excess pore pressure and horizontal displacement of walls were obtained far the small and large models. However, the medium model showed larger responses than those of the small and large models because of the resonance between the frequency of input acceleration and the natural frequency of the wall system. In addition, the vertical displacement and rotational angle of the walls became larger with the increase of model size.

A Study on the Performance Degradation Pattern of Caisson-type Quay Wall Port Facilities (케이슨식 안벽 항만시설의 성능저하패턴 연구)

  • Na, Yong Hyoun;Park, Mi Yeon;Jang, Shinwoo
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.1
    • /
    • pp.146-153
    • /
    • 2022
  • Purpose: In the case of domestic port facilities, port structures that have been in use for a long time have many problems in terms of safety performance and functionality due to the enlargement of ships, increased frequency of use, and the effects of natural disasters due to climate change. A big data analysis method was studied to develop an approximate model that can predict the aging pattern of a port facility based on the maintenance history data of the port facility. Method: In this study, member-level maintenance history data for caisson-type quay walls were collected, defined as big data, and based on the data, a predictive approximation model was derived to estimate the aging pattern and deterioration of the facility at the project level. A state-based aging pattern prediction model generated through Gaussian process (GP) and linear interpolation (SLPT) techniques was proposed, and models suitable for big data utilization were compared and proposed through validation. Result: As a result of examining the suitability of the proposed method, the SLPT method has RMSE of 0.9215 and 0.0648, and the predictive model applied with the SLPT method is considered suitable. Conclusion: Through this study, it is expected that the study of predicting performance degradation of big data-based facilities will become an important system in decision-making regarding maintenance.

Prediction of Settlement of SCP Composite Ground using Genetic Algorithm (유전자 알고리즘 기법에 근거한 SCP 복합지반의 침하 예측)

  • 박현일;김윤태;이형주
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.2
    • /
    • pp.64-74
    • /
    • 2004
  • In order to accelerate the rate of consolidation settlement, to reduce settlement, and to increase bearing capacity for soft ground under quay wall, sand compaction pile method (SCP) has widely been applied. Improved ground is composite ground which is consisted of the sand pile-surrounding clayey soil. As caisson and upper structures are installed on SCP composite ground, the settlement is compositively occurred by elastic compression of sand compaction piles and also consolidation of the surrounding clay ground. In this study, the combined settlement model is proposed to predict the settlement of SCP composite ground in basis of elastic theory for sand compaction pile and consolidation theory for marine soft clay. Optimization technique was performed based on back-analysis so that real coded genetic algorithm was applied to estimate the parameters of the proposed settlement model. Case analysis was carried out for a domestic SCP composite ground to examine the applicability of the proposed prediction technique.

Experimental Study on Effect of Hybrid Quay Wall According to Floating Breakwater (부유식 방파제에 따른 안벽 내 영향에 관한 실험적 연구)

  • Son, Hyok Jun;Cho, Yong-Sik
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.53-53
    • /
    • 2011
  • 최근에 세계화, 무역자유화에 따른 컨테이너 물동량이 증가하고 있다. 그에 발맞추어 초대형 컨테이너선이 등장하게 되고 신개념, 고효율의 항만인프라의 도입이 요구되고 있다. 이런 배경에 따라 최근에 국내외에서 부유식 안벽에 관한 기술 개발 및 연구가 더욱 필요한 상황이다. 부유식 안벽은 이동가능한 부유식 구조로 기존 항만의 확장 또는 신규 항만 건설시 환경문제를 최소화하고 기항, 선박수 및 선박의 크기에 따른 안벽 배열을 최적화 할 수 있어 항만 기능을 고도화함으로써 녹색항만을 구현하는데 많은 기여를 하게 될 것이다. 특히 컨테이너선의 양현하역과 환적이 가능하게 되어 컨테이너 터미널의 화물처리능력을 확대할 수 있을 뿐 아니라 기항선박의 체류시간을 최소화 할 수 있는 장점이 있다. 또한, 우리나라는 삼면이 바다로 크고 작은 항만들이 해안선을 따라 위치하고 있다. 이러한 항만들을 안전하게 보호하기 위한 방파제는 항만 기본시설인 외곽시설 중의 가장 중요한 구조물이다. 국내에 설치된 방파제는 대부분 사석이나 케이슨을 이용한 중력식 방파제로써 해저에 고정되어 해수면상으로 건설되므로 항내 외 해수교환을 차단하여 항내 수질악화를 초래할 뿐만 아니라 수심에 따라 막대한 건설비용이 소요된다. 따라서 친환경적이고 경제적인 새로운 형식의 방파제에 대한 연구 및 개발이 필요한 실정이다. 그 중 하나의 대안인 부유식 방파제는 공사기간이 짧고 비교적 수심에 대한 제약이 없는 것이 특징이다. 또한 해수의 원활한 흐름이 가능하기 때문에 중력식 방파제에 비해 경제적이며, 환경적 측면에서 큰 장점이 있다. 하지만 아직까지 부유식 방파제에 대한 국내 및 해외에서의 연구는 이론적인 해석을 중심으로 이루어져 부유식 방파제 실용화를 위한 많은 연구가 수행되어야 할 것으로 판단된다. 본 연구에서는 부유식 안벽 내에서 정온도를 효과적으로 유지하기 위하여 부유식 방파제를 설치하고 소파성능과 부유식 안벽내의 영향성을 수리모형실험을 통해 분석하였다.

  • PDF

The Risk Analysis and Stability Estimation of Ship Collision Protection of Myodo-Gangyang Suspension Bridge (묘도-광양간 현수교의 선박충돌 방지공의 위험도 분석 및 안정성 평가)

  • Chang, Yong-Chai;Park, Ki-Chul;Kim, Kyung-Taek
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.2
    • /
    • pp.127-133
    • /
    • 2009
  • The suspension bridge between Myodo and Gwangyang is located in the main navigation channel to Gwangyang Harbor. So, there is need for the collision protection against large vessels. In this paper, the method of risk analysis and non-linear numerical analysis are conducted to consider the ship collision effects. The results of risk analysis, the annual frequency of collapse is more than the acceptable frequency 0.0001. Therefore, as a ship collision protection, island protection with concrete block quay wall is planned. The ship collision force on the pylon is less than the lateral capacity of pylon from the nonlinear numerical analysis.

  • PDF