• Title/Summary/Keyword: Quaternary System

Search Result 158, Processing Time 0.024 seconds

Study on the Degradation Behavior of Berberine Dye and Berberine Dyed Silk using Hydrogen Peroxide/UV/Oxygen Treatment (과산화수소/자외선/산소 처리를 이용한 베르베린 염료 및 염직물의 퇴화거동 연구)

  • Ahn, Cheun-Soon
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.2
    • /
    • pp.238-250
    • /
    • 2012
  • This study examined the degradation behavior of SB(standard berberine) dye and SB dyed silk using HPLC-MS instrument after degradation in the hydrogen peroxide/ultraviolet ray radiation/oxygen system up to 9 days and 40 hours respectively. In the degraded samples, berberine was detected at 5.2 min in the SB dye and 5.3 min in the SB dyed silk with its molecular ion=336 and the UV spectra of quaternary alkaloid. Degradation product 3(m/z=102) newly appeared after 5 day degradation treatment with continued increase till the end of degradation treatment. The amount of berberine in the degraded dye decreased with degradation progression. In the silk dyeings, berberine was detected only up to 21 hour degradation sample. The amount of berberine decreased dramatically during the first 6 hours of degradation treatment. The CIELAB color measurement of the silk dyeings showed dramatic change in the b* value, near zero in the 40 hour degraded silk. CIELAB and Munsell color measurements were in agreement with the HPLC-MS results of the dyed silk in the change of berberine content that the degraded silk became white and lost yellow color.

Corrosion Behavior of Zirconium Alloys with Nb and Cr Addition (Nb 및 Cr 첨가에 따른 지르코늄 합금의 부식거동)

  • Kim, Yoon-Ho;Mok, Yong-Kyoon;Kim, Hyun-Gil;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.376-385
    • /
    • 2015
  • The effects of Nb and Cr addition on the microstructure, corrosion and oxide characteristics of Zr based alloys were investigated. The corrosion tests were performed in a pressurized water reactor simulated-loop system at $360^{\circ}C$. The microstructures were examined using OM and TEM, and the oxide properties were characterized by low-angle X-ray diffraction and TEM. The corrosion test results up to 360 days revealed that the corrosion rates were considerably affected by Cr content but not Nb content. The corrosion resistance of the Zr-xNb-0.1Sn-yCr quaternary alloys was improved by an increasing Nb/Cr ratio. The crystal structure of the precipitates was affected by a variation of the Nb/Cr ratio. The Zr-Nb beta-enriched precipitates were mainly formed in the high Nb/Cr ratio alloy while $Zr(NbCr)_2$ precipitates were frequently observed in the low Nb/Cr ratio alloy. The studies of oxide characteristics revealed that the corrosion resistance was related to the crystal structure of the precipitate.

Syntheses and Mechanical Properties of Quaternary Cr-Si-O-N Coatings by Hybrid Coating System (하이브리드 코팅시스템에 의한 Cr-Si-O-N 코팅막 합성 및 기계적 성질)

  • Lee, Jeong-Doo;Wang, Qi Min;Kim, Kwang-Ho
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.238-242
    • /
    • 2010
  • In the present work, the influence of oxide on the Cr-Si-N coatings was investigated for the Cr-Si-O-N coatings on AISI 304 and Si wafer deposited by hybrid system, which combines the DC magnetron sputtering technique and arc ion plating (AIP) using Cr and Si target in an $Ar/N_2/O_2$ gaseous mixture. As the O content in the Cr-Si-N coatings increased, the diffraction patterns of the Cr-Si-O-N coatings showed CrN and $Cr_2O_3$ phases. However, as the O content increased to 28.8 at.%, diffraction peak of $Cr_2O_3$ was disappeared in the Cr-Si-O-N coating. The $d_{200}$ value was decreased with increasing of O content. The average grain size increased from about 40 nm to 65 nm as the O content increased. The maximum micro-hardness of the Cr-Si-O-N coating was obtained 4507 Hk at the O content of 24.8 at.%. The average friction coefficient of the Cr-Si-O-N coatings was gradually decreased by increasing the O content and the average friction coefficient decreased from 0.37 to 0.25 by increasing the O content. These results indicated that amorphous phase was increased in the Cr-Si-O-N coatings by increasing of O content.

One-step synthesis of dual-transition metal substitution on ionic liquid based N-doped mesoporous carbon for oxygen reduction reaction

  • Byambasuren, Ulziidelger;Jeon, Yukwon;Altansukh, Dorjgotov;Ji, Yunseong;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.17 no.1
    • /
    • pp.53-64
    • /
    • 2016
  • Nitrogen (N)-doped ordered mesoporous carbons (OMCs) with a dual transition metal system were synthesized as non-Pt catalysts for the ORR. The highly nitrogen doped OMCs were prepared by the precursor of ionic liquid (3-methyl-1-butylpyridine dicyanamide) for N/C species and a mesoporous silica template for the physical structure. Mostly, N-doped carbons are promoted by a single transition metal to improve catalytic activity for ORR in PEMFCs. In this study, our N-doped mesoporous carbons were promoted by the dual transition metals of iron and cobalt (Fe, Co), which were incorporated into the N-doped carbons lattice by subsequently heat treatments. All the prepared carbons were characterized by via transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). To evaluate the activities of synthesized doped carbons, linear sweep was recorded in an acidic solution to compare the ORR catalytic activities values for the use in the PEMFC system. The dual transition metal promotion improved the ORR activity compared with the single transition metal promotion, due to the increase in the quaternary nitrogen species from the structural change by the dual metals. The effect of different ratio of the dual metals into the N doped carbon were examined to evaluate the activities of the oxygen reduction reaction.

Geology of the Kualkulun in the Middle Kalimantan, Indonesia: I. Stratigraphy and Structure (인도네시아 중부 칼리만탄 쿠알라쿠룬 지역의 지질: I. 층서 및 구조)

  • Kim In-Joon;Kee Won-Seo;Song Kyo-Young;Kim Bok-Ghul;Lee Sa-Ro;Lee Gyoo Ho
    • Economic and Environmental Geology
    • /
    • v.37 no.5
    • /
    • pp.437-457
    • /
    • 2004
  • The geology of the Kualakulun in the Middle Kalimantan, Indonesia comprises Permian to Carboniferous Pinoh Metamorphic Rocks and Cretaceous Sepauk Plutonics of the Sunda Shield, late Eocene Tanjung Formation, Oligocene Malasan Volcanics, Oligocene to early Miocene Sintang Intrusives and Quaternary alluvium. Tanjung Formation was deposited in low-and high-sinuosity channel networks developed on the proximal to distal delta plain and delta front forming southward paleoflow system, which, in turn, gradually change into shallow marine environment. Four main deformational phases are recognized: D1, folding of metamorphic rocks accompanied by development of S1 schistosity under regional metamorphic condition; D2, ductile shearing in Cretaceous granitoids; D3, folding of metamorphic rocks accompanied by S2 crenulation cleavage; D4, faulting under N-S compressional regime during Tertiary times, producing NE-trending sinistral and NW-trending dextral strike-slip faults and N-S to NNE-trending normal faults.

Determination of the Nucleation Rate Curve for Lead Titanate in the PbO-TiO$_2$-B$_2$O$_3$-BaO by Diffferential Thermal Analysis (PbO-TiO$_2$-B$_2$O$_3$-BaO 계 유리에서 PbTiO$_3$ 결정의 핵생성 곡선 결정을 위한 열시차분석법의 응용)

  • 이선우;심광보;오근호
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.640-646
    • /
    • 1998
  • Nucleation and crystallzation of a quaternary glass system for lead titanate glass-ceramics were in-vestigated using DTA(differential thermal analysis ) with variation of nucleation temperature and crystal growth time. Glass samples containing 60mol% of PbO-{{{{ { TiO}_{2 } }} were prepared from melts by the conventional normal cooling method in a cylindrical brass mould. The glass sample was nucleated between 40$0^{\circ}C$ and 50$0^{\circ}C$ for a given time and showed the maximum nucleation rate at 46$0^{\circ}C$ The DTA crystallization peak temperature decreased with increasing nucleating time and decreasing heating rate during DTA runs which indicated an increase of the number of nuclei produced in the system.

  • PDF

The Kinetics of Radical Polymerization of Styrene with Tricaprylymethylammonium Chloride as a Phase-Transfer Catalyst (상이동촉매인 트리카프릴메틸암모니움 클로라이드를 사용한 스티렌 라디칼중합의 동력학적 연구)

  • Park, Sang-Wook;Sohn, In-Joe;Park, Sang-Bo
    • Journal of Adhesion and Interface
    • /
    • v.2 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • The phase-transfer catalyzed radical polymerization of styrene was carried out using tricaprylylmethylammonium chloride as a phase-transfer catalyst in a two-phase system of an aqueous $Na_2S_2O_8$ solution and toluene at $60^{\circ}C$ under nitrogen atmosphere. The initial rate of radical polymerization was expressed as the combined terms of concentrations of quaternary onium cation and peroxydisulfate anion in the aqueous phase rather than the fed concentrations of catalyst and $Na_2S_2O_8$. The observed initial rate of radical polymerization was used to analyze the radical polymerization mechanism with a cycle phase-transfer initiation step in the heterogeneous liquid-liquid system. The viscosity average molecular weight of polystyrene was inversely proportional to concentration of $Na_2S_2O_8$ expressed as $[Q^+]([S_2O{_8}^{2-}]{\alpha}_2)^{1/2}$ derived by the radical polymerization mechanism.

  • PDF

A Study on the Antibacterial Properties of CPVC(Chlorinated polyvinyl chloride) Film treated with ODDMAC(Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride) (CPVC(Chlorinated polyvinyl chloride)와 ODDMAC(Octadecyldimethyl(3-triethoxy silylpropyl) ammonium chloride) 첨가한 필름의 항균 특성)

  • Kim, Jiyeon;Lee, Sang Oh;Lee, Jaewoong
    • Textile Coloration and Finishing
    • /
    • v.33 no.2
    • /
    • pp.72-78
    • /
    • 2021
  • The purpose of this study, the purpose of this study is to activate the antibacterial effect on the Chlorinated polyvinyl chloride film by using Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride antibacterial agent with Chlorinated polyvinyl chloride polymer, which is inexpensive and has excellent properties such as heat resistance and chemical resistance. The Chlorinated polyvinyl chloride polymer was dissolved in a dimethylacetamide solvent, and film samples were prepared by varying the ratio of Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride to study the antibacterial performance. A Scanning Electron Microscope-Energy Dispersive X-ray Spectrometer and X-ray photoelectron spectroscopy were employed to confirm the elements in the samples. According to the initial decomposition temperature of the Chlorinated polyvinyl chloride film and the Chlorinated polyvinyl chloride/Octadecyldimet hyl (3-triethoxy silylpropyl) ammonium chloride(10%) film using a Thermogravimetric analyzer(TA-DTA), it was confirmed that the initial decomposition temperature was lowered due to the influence of Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride. In addition, in order to measure the mechanical properties, Universal testing machine was used and the result showed that a strength of Chlorinated polyvinyl chloride/Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride(10%) was 36.8 MPa. The antimicrobial properties of the Chlorinated polyvinyl chloride/Octadecyldimethyl (3-triethoxy silylpropyl) ammonium chloride(10%) film showed 99.9% antimicrobial properties.

Characterization of Solidification and Microstructure of an Al-Zn-Mg-Si Alloy

  • He Tian;Dongdong Qu;Zherui Tong;Nega Setargew;Daniel J. Parker;David StJohn;Kazuhiro Nogita
    • Corrosion Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.104-112
    • /
    • 2024
  • Al-Zn-Mg-Si alloy coatings have been developed to inhibit corrosion of cold rolled steel sheets, and an understanding of the alloy system helps prevent coating defects. We used a Bridgman furnace to characterise the nature and formation mechanisms of the phases present in the quaternary system with 0.4 wt% Fe. In the directional solidification experiments we imposed steep temperature gradients and varied the pull rate. After the samples were quenched in the furnace, detailed characterization of the samples was carried out by electron microscopy (SEM/EDS). From the dT/dt vs T plots of the cooling curves of the alloys, the solidification path was determined to be $Liquid{\longrightarrow[80]^{544-558}}{\alpha}-Al{\longrightarrow[80]^{453-459}}Al/Mg_2Si{\longrightarrow[80]^{371-374}}Al/Zn{\longrightarrow[80]^{331-333}}Zn/mgZn_2$. The formation mechanisms of the Mg and Zn containing phases and their morphology was discussed together with the effects of the cooling rate. Key findings include the lengthening of the mushy zone in directionally solidified samples remelted against a positive temperature gradient, as well as an enrichening of the α-Al phase by Zn through remelting. Mg2Si and other Si based phases were observed to adopt a much finer faceted microstructure in favour of a script-like microstructure when exposed to the higher cooling rate of coolant quenching.

Refractive-index Prediction for High-refractive-index Optical Glasses Based on the B2O3-La2O3-Ta2O5-SiO2 System Using Machine Learning

  • Seok Jin Hong;Jung Hee Lee;Devarajulu Gelija;Woon Jin Chung
    • Current Optics and Photonics
    • /
    • v.8 no.3
    • /
    • pp.230-238
    • /
    • 2024
  • The refractive index is a key material-design parameter, especially for high-refractive-index glasses, which are used for precision optics and devices. Increased demand for high-precision optical lenses produced by the glass-mold-press (GMP) process has spurred extensive studies of proper glass materials. B2O3, SiO2, and multiple heavy-metal oxides such as Ta2O5, Nb2O5, La2O3, and Gd2O3 mostly compose the high-refractive-index glasses for GMP. However, due to many oxides including up to 10 components, it is hard to predict the refractivity solely from the composition of the glass. In this study, the refractive index of optical glasses based on the B2O3-La2O3-Ta2O5-SiO2 system is predicted using machine learning (ML) and compared to experimental data. A dataset comprising up to 271 glasses with 10 components is collected and used for training. Various ML algorithms (linear-regression, Bayesian-ridge-regression, nearest-neighbor, and random-forest models) are employed to train the data. Along with composition, the polarizability and density of the glasses are also considered independent parameters to predict the refractive index. After obtaining the best-fitting model by R2 value, the trained model is examined alongside the experimentally obtained refractive indices of B2O3-La2O3-Ta2O5-SiO2 quaternary glasses.