• Title/Summary/Keyword: Quasilocal ring

Search Result 2, Processing Time 0.016 seconds

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

Characterization of Prime and Maximal Ideals of Product Rings by 𝓕 - lim

  • Mouadi, Hassan;Karim, Driss
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.823-830
    • /
    • 2021
  • Let {Ri}i∈I be an infinite family of rings and R = ∏i∈I Ri their product. In this paper, we investigate the prime spectrum of R by 𝓕-limits. Special attention is paid to relationship between the elements of Spec(Ri) and the elements of Spec(∏i∈I Ri) use 𝓕-lim, also we give a new condition so that ∏i∈I Ri is a zero dimensional ring.