• Title/Summary/Keyword: Quasi-three-dimensional model

Search Result 81, Processing Time 0.021 seconds

Effective Boundary Conditions for FEM Analysis of Composite Laminates (복합재료 적층판의 유한요소 해석을 위한 효율적 경계조건)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.92-98
    • /
    • 1998
  • This paper presents three boundary techniques which are useful for FEM analysis of composite laminates: 1) a rotational symmetric boundary technique . 2) a quasi three-dimensional boundary technique and 3) a contact boundary technique. The use of the rotational symmetric boundary technique is possible for a smaller FEM model. With the use of the quasi three-dimensional boundary tecnique. quasi three dimensional analysis of composite laminates can be performed on the conventional 3-D FEM program These techniques can readily be adopted to FEM programs.

  • PDF

Reduced Quasi-Dimensional Combustion Model of the Direct Injection Diesel Engine for Performance and Emissions Predictions

  • Jung, Dohoy;Assanis, Dennis N.
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.865-876
    • /
    • 2004
  • A new concept of reduced quasi-dimensional combustion model for a direct injection diesel engine is developed based on the previously developed quasi-dimensional multi-zone model to improve the computational efficiency. In the reduced model, spray penetration and air entrainment are calculated for a number of zones within the spray while three zones with aggregated spray zone concept are used for the calculation of spray combustion and emission formation processes. It is also assumed that liquid phase fuel appears only near the nozzle exit during the breakup period and that spray vaporization is immediate in order to reduce the computational time. Validation of the reduced model with experimental data demonstrated that the new model can predict engine performance and NO and soot emissions reasonably well compared to the original model. With the new concept of reduced model, computational efficiency is significantly improved as much as 200 times compared to the original model.

Simulation of Quench in Pancake-shaped Superconducting Magnet Using a Quasi-three-dimensional Model

  • Wang, Qiuliang;Yoon, Cheon-Seog;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • A quench phenomenon is caused by an external disturbance in a superconducting magnet, where the magnet is operating in a cryogenic environment. The heat coupling between the layers and pancakes of the magnet can induce the normal zone propagation with fast speed. In order to analyze quench behavior in a pancake-shaped superconducting magnet, a quasi-three-dimensional model is proposed. A moving mesh finite volume method is employed in solving the heat conduction equation. The quench process of the superconducting magnet is studied under the various operating conditions and cooling conditions.

  • PDF

The response of a blade row to a three-dimensional turbulent gust

  • Wei, Dingbing;Kim, Dae-Hwan;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.74-75
    • /
    • 2010
  • Inflow broadband noise is generated when turbulence in the rotor wakes impinges on the downstream stator vanes. In this paper a three-dimensional model is developed to investigate the broadband noise due to turbulence-cascade interaction. In the newly-developed model, we consider the effects of incident turbulent gust component in span-wise direction on the inflow broadband noise. The quasi-three-dimensional theory is deduced based on the tonal analytic theory of Smith (1972) and two-dimensional broadband noise generalization by Cheong et al. (2006; 2009). Extending the modified LINSUB code, quasi-three-dimensional computational results are presented. Finally, we compare these computational results with time-domain results to validate the theory.

  • PDF

A Study on the Quasi-3-Dimensional Compressible Flow Calculation by Introduction of Viscous Loss Model in Axial-Flow Compressor (점성 손실모델 도입에 의한 축류 압축기 준 3차원 압축성 유동해석)

  • 조강래;이진호;김주환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.1044-1051
    • /
    • 1989
  • A numerical calculation is carried out for the analysis of 3-dimensional compressible flow field in axial-flow rotating blades by using finite element method. The calculation of flow in impellers plays a dominant role in the theoretical research and design of turbomachines. Three-dimensional flow fields can be obtained by the quasi-three-dimensional iterative calculation of the flows both on blade-to-blade stream surfaces and hub-to-shroud stream surfaces with the introduction of viscous loss model in order to consider a loss due to viscosity of fluid. In devising the loss model, four primary sources of losses were identified: (1) blade profile loss (2) end wall loss (3) secondary flow loss (4) tip-leakage loss. For the consideration of an axially parabolic distribution of loss, the results of present calcullation are well agreed with the results by experiment, thus the introduction of loss model is proved to be valid.

A Study on the Local Dynamic Characteristics of High Temperature Proton Exchange Membrane Fuel Cell by Quasi-three-dimensional Model (고온형 고분자전해질 연료전지의 준3차원 모델링을 통한 국부적 동특성 해석에 관한 연구)

  • Park, Jaeman;Min, Kyoungdoug;Kang, Sanggyu
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • High temperature proton exchange membrane fuel cell (HT-PEMFC) has been regarded as a promising clean energy sources. In this study, a quasi-three-dimensional dynamic model of HT-PEMFC has been developed and the local dynamic characteristics are investigated. The model has the geometrical simplification of 2+1D reduction (quasi-3D). The one-dimensional model consists of nine control volumes in cross-sectional direction to solve the energy conservation and the species conservation equations. Then, the one-dimensional model is discretized into 25 local sections along the gas flow direction to account for gas and thermal transport in channels. With this discretization, the local characteristics of HT-PEMFC such as species conservation, temperature, and current density can be captured. In order to study the basic characteristics of HT-PEMFC, it is important to investigate the local dynamic characteristics. Thus, the model is simulated at various operating conditions and the local dynamic characteristics related to them are observed. The model is useful to investigate the distribution of HT-PEMFC characteristics and the physical phenomena in HT-PEMFC.

  • PDF

A Study on Heat Transfer Characteristics of Laser Cutting for the CSP 1N Sheet Using High-power CW Nd:YAG Laser (고출력 CW Nd:YAG 레이저를 이용한 CSP 1N 박판 절단공정의 열전달 특성 분석)

  • Ahn, Dong-Gyu;Kim, Min-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.1
    • /
    • pp.51-58
    • /
    • 2006
  • The objective of this research work is to investigate into heat transfer characteristics of the laser cutting of CSP 1N sheet using high power CW Nd:YAG laser. In order to investigate the heat transfer characteristics, three dimensional quasi stationary and steady-state heat transfer analysis has been carried out. The laser heat source is assumed as a volumetric heat source with a gaussian heat distribution in a plane. Through the comparison of the results of analyses with those of experiments, the proper finite element model has been obtained. In addition, characteristics of the three-dimensional heat transfer and temperature distribution have been estimated by the finite element model. Finally, the minimum temperature at the center for cutting of the material has been estimated.

  • PDF

A hydrodynamic model of nearshore waves and wave-induced currents

  • Sief, Ahmed Khaled;Kuroiwa, Masamitsu;Abualtayef, Mazen;Mase, Hajime;Matsubara, Yuhei
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.3
    • /
    • pp.216-224
    • /
    • 2011
  • In This study develops a quasi-three dimensional numerical model of wave driven coastal currents with accounting the effects of the wave-current interaction and the surface rollers. In the wave model, the current effects on wave breaking and energy dissipation are taken into account as well as the wave diffraction effect. The surface roller associated with wave breaking was modeled based on a modification of the equations by Dally and Brown (1995) and Larson and Kraus (2002). Furthermore, the quasi-three dimensional model, which based on Navier-Stokes equations, was modified in association with the surface roller effect, and solved using frictional step method. The model was validated by data sets obtained during experiments on the Large Scale Sediment Transport Facility (LSTF) basin and the Hazaki Oceanographical Research Station (HORS). Then, a model test against detached breakwater was carried out to investigate the performance of the model around coastal structures. Finally, the model was applied to Akasaki port to verify the hydrodynamics around coastal structures. Good agreements between computations and measurements were obtained with regard to the cross-shore variation in waves and currents in nearshore and surf zone.

Quasi-Three Dimensional Calculation of Compressible Flow in a Turbomachine considering Irreversible H-S Flow (터어보 기계(機械) 내부(內部)의 비가역(非可逆) H-S유동(流動)을 고려(考慮)한 준(準)3차원(次元) 유동해석(流動解析))

  • Cho, Kang-Rae;Oh, Jong-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.4
    • /
    • pp.241-249
    • /
    • 1991
  • A quasi-three dimensional calculation method is presented on the basis of Wu's idea using finite element methods. In B-B flow the governing equations are cast into a single equation to overcome the restriction of the type of turbomachinery, and Kutta condition is exactly assured by introducing a combination of two kinds of stream functions. In H-S flow a dissipative force which is assumed to be opposed to the relative velocity is added to the governing equation for a consistent loss model. The entropy change along each streamline is then calculated by assuming that the dissipative force may be a force coming from laminar viscous stresses with inviscid velocity distributions. Both the flow solvers are combined to build a three-dimensional flow field through a few iterations. For an effect of the distortion of H-S flow surface the body forces are computed after each B-B flow calculation is finished. Mizuki's centrifugal impellers are tested numerically. The reliability of the numerical solution compared with experimental data is guaranteed.

  • PDF

Quasi-Two-Dimensional Model for Floodplain Flow Simulation (준2차원 홍수범람 모형에 관한 연구)

  • Jeon, Gyeong-Su
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.515-528
    • /
    • 1998
  • A quasi-two-dimensional model for simulating the flood plain flow is developed. The model consists, in general, of a multiply-connected network which combines the main channel and two-dimensional flood plain cells. The main channel flow is described by the Saint Venant equations for one-dimensional unsteady flow, and the flood plain flow by the cell continuity and river-or weir-type stage-discharge relations between flood plain cells. The implicit algorithm for unsteady flow in looped channel network is extended to incorporate the flood plain flow. To verify the performance of the model, it is applied to three test problems, and sensitivities to various model parameters are analyzed. It turns out that the present model gives more accurate result than that by Cunge (1975) as the shape of cross section becomes more complex and irregular. Not only the inundation of water from the main channel but the return flow from the flood plain is successfully simulated.

  • PDF