• Title/Summary/Keyword: Quasi-nano

Search Result 54, Processing Time 0.025 seconds

A quasi-3D nonlocal theory for free vibration analysis of functionally graded sandwich nanobeams on elastic foundations

  • Mofareh Hassan Ghazwani;Ali Alnujaie;Pham Van Vinh;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.3
    • /
    • pp.313-324
    • /
    • 2024
  • The main aims of this study are to develop a new nonlocal quasi-3D theory for the free vibration behaviors of the functionally graded sandwich nanobeams. The sandwich beams consist of a ceramic core and two functionally graded material layers resting on elastic foundations. The two layers, linear spring stiffness and shear layer, are used to model the effects of the elastic foundations. The size-effect is considered using nonlocal elasticity theory. The governing equations of the motion of the functionally graded sandwich nanobeams are obtained via Hamilton's principle in combination with nonlocal elasticity theory. Then the Navier's solution technique is used to solve the governing equations of the motion to achieve the nonlocal free vibration behaviors of the nanobeams. A deep parametric study is also provided to demonstrate the effects of some parameters, such as length-to-height ratio, power-law index, nonlocal parameter, and two parameters of the elastic foundation, on the free vibration behaviors of the functionally graded sandwich nanobeams.

A design of tuning band and structure to generate diverse properties by stretching

  • Ruqi Wang;Ruoyun Li
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.451-461
    • /
    • 2023
  • Two-dimensional (2D) materials have been attracting attention since graphene monolayer was firstly separated. However, after an explosive boom, there is always quandary and stagnancy following and soon will come the refractory period of capital market. To avoid that undesired future, a paradigm of quasi 2D monolayer has been contemplated and devised in this article, with examples studied theoretically. The results show the general dynamic nonlinearity, and the expected tunability of bandgap without extra doping or substitution. These together suggest its intriguing both electronical and mechanical properties, which will enrich the arsenal of potential 2D materials.

Degradation Mechanisms of a Li-S Cell using Commercial Activated Carbon

  • Norihiro Togasaki;Aiko Nakao;Akari Nakai;Fujio Maeda;Seiichi Kobayashi;Tetsuya Osaka
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.361-368
    • /
    • 2023
  • In lithium-sulfur (Li-S) batteries, encapsulation of sulfur in activated carbon (AC) materials is a promising strategy for preventing the dissolution of lithium polysulfide into electrolytes and enhancing cycle life, because instead of solid-liquid-solid reactions, quasi-solid-state (QSS) reactions occur in the AC micropores. While a high weight fraction of sulfur in S/AC composites is essential for achieving a high energy density of Li-S cells, the deterioration mechanisms under such conditions are still unclear. In this study, we report the deterioration mechanisms during charge-discharge cycling when the discharge products overflow from the AC. Analysis using scanning electron microscopy and energy-dispersive X-ray spectrometry confirms that the sulfur in the S/AC composites migrates outside the AC as cycling progresses, and it is barely present in the AC after 20 cycles, which corresponds to the capacity decay of the cell. Impedance analysis clearly shows that the electrical resistance of the S/AC composite and the charge-transfer resistance of QSS reactions significantly increase as a result of sulfur migration. On the other hand, the charge-discharge cycling performance under limited-capacity conditions, where the discharge products are encapsulated inside the AC, is extremely stable. These results reveal the degradation mechanism of a Li-S cell with micro-porous carbon and provide crucial insights into the design of a S/AC composite cathode and its operating conditions needed to achieve stable cycling performance.

A New Approach of Multi-Scale Simulation for Investigating Nano-Scale Material Deformation Behavior (나노스케일 재료 변형 거동을 위한 새로운 멀티스케일 접근법)

  • Park, Junyoung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.8 no.1
    • /
    • pp.43-47
    • /
    • 2009
  • Recently, an approach for nano-scale material deformation has been developed that couples the atomistic and continuum approaches using Finite Element Method (FEM) and Molecular Dynamics (MD). However, this approach still has problems to connect two approaches because of the difference of basic assumptions, continuum and atomistic modeling. To solve this problem, an alternative way is developed that connects the QuasiMolecular Dynamics (QMD) and molecular dynamics. In this paper, we suggest the way to make and validate the MD-QMD coupled model.

  • PDF

First-Principles Study on the Electronic Structure of Bulk and Single-Layer Boehmite

  • Son, Seungwook;Kim, Dongwook;Na-Phattalung, Sutassana;Ihm, Jisoon
    • Nano
    • /
    • v.13 no.12
    • /
    • pp.1850138.1-1850138.6
    • /
    • 2018
  • Two-dimensional (2D) or layered materials have a great potential for applications in energy storage, catalysis, optoelectronics and gas separation. Fabricating novel 2D or quasi-2D layered materials composed of relatively abundant and inexpensive atomic species is an important issue for practical usage in industry. Here, we suggest the layer-structured AlOOH (Boehmite) as a promising candidate for such applications. Boehmite is a well-known layer-structured material and a single-layer can be exfoliated from the bulk boehmite by breaking the interlayer hydrogen bonding. We study atomic and electronic band structures of both bulk and single-layer boehmite, and also obtain the single-layer exfoliation energy using first-principles calculations.

The Efficient Production on single- and Multi- Wall Carbon Nanotubes

  • Shinohara, H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2000.02a
    • /
    • pp.207-207
    • /
    • 2000
  • Multi- and single-wall carbon nanotubes are promising new carbon materials in nano-electronics, field-emitters, CRT-displays, hydrogen storage materials, biomedical tracers and so forth. The present talk will deal with a high-yield synthesis on quasi-aligned multi-wall carbon nanotubes via a chemical vapor deposition technique. I will also talk about a possible growth mechanism on single-wall carbon nanotubes based on newly obtained experimental results.

  • PDF

Realization of Plasmonic Adaptive Coupler using Curved Multimode Interference Waveguide (곡면형 다중모드 간섭 도파로를 사용한 플라즈마 적응 결합기의 구현)

  • Ho, Kwang-Chun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • Nano-scale power splitter based on curved plasmonic waveguides are designed by utilizing the multimode interference (MMI) coupler. To analyze easily the adaptive properties of plasmonic curverd multimode interference coupler(PC-MMIC), the curved form transforms equivalently into a planar form by using conformal transformation method. Also, effective dielectric method and longitudinal modal transmission-line theory are used for simulating the light propagation and optimizing the structural parameters at 3-D guiding geometry. The designed $2{\times}2$ PC-MMIC does not work well for quasi-TM mode case due to the bending structure, and it does not exist 3dB coupling property, in which the power splitting ratio is 50%:50%, for quasi-TE mode case. Further, the coupling efficiency is better when the signal is incident at channel with large curvature radius than small curvature radius.

Study of ablation depth control of ITO thin film using a beam shaped femtosecond laser (빔 쉐이핑을 이용한 펨토초 레이저 ITO 박막 가공 깊이 제어에 대한 연구)

  • Kim, Hoon-Young;Yoon, Ji-Wook;Choi, Won-Seok;Stolberg, Klaus;Whang, Kyoung-Hyun;Cho, Sung-Hak
    • Laser Solutions
    • /
    • v.17 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Indium tin oxide (ITO) is an important transparent conducting oxide (TCO). ITO films have been widely used as transparent electrodes in optoelectronic devices such as organic light-emitting devices (OLED) because of their high electrical conductivity and high transmission in the visible wavelength. Finding ways to control ITO micromachining depth is important role in the fabrication and assembly of display field. This study presented the depth control of ITO patterns on glass substrate using a femtosecond laser and slit. In the proposed approach, a gaussian beam was transformed into a quasi-flat top beam by slit. In addition, pattern of square type shaped by slit were fabricated on the surfaces of ITO films using femtosecond laser pulse irradiation, under 1030nm, single pulse. Using femtosecond laser and slit, we selectively controlled forming depth and removed the ITO thin films with thickness 145nm on glass substrates. In particular, we studied the effect of pulse number on the ablation of ITO. Clean removal of the ITO layer was observed when the 6 pulse number at $2.8TW/cm^2$. Furthermore, the morphologies and fabricated depth were characterized using a optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS).

  • PDF

Fabrication from the Hybrid Quantum Dots of CdTe/ZnO/G.O Quasi-core-shell-shell for the White LIght Emitting DIodes

  • Kim, Hong Hee;Lee, YeonJu;Lim, Keun yong;Park, CheolMin;Hwang, Do Kyung;Choi, Won Kook
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.189-189
    • /
    • 2016
  • Recently, many researchers have shown an increased interest in colloidal quantum dots (QDs) due to their unique physical and optical properties of size control for energy band gap, narrow emission with small full width at half maxima (FWHM), broad spectral photo response from ultraviolet to infrared, and flexible solution processing. QDs can be widely used in the field of optoelectronic and biological applications and, in particular, colloidal QDs based light emitting diodes (QDLEDs) have attracted considerable attention as an emerging technology for next generation displays and solid state lighting. A few methods have been proposed to fabricate white color QDLEDs. However, the fabrication of white color QDLEDs using single QD is very challenging. Recently, hybrid nanocomposites consisting of CdTe/ZnO heterostructures were reported by Zhimin Yuan et al.[1] Here, we demonstrate a novel but facile technique for the synthesis of CdTe/ZnO/G.O(graphene oxide) quasi-core-shell-shell quantum dots that are applied in the white color LED devices. Our best device achieves a maximum luminance of 484.2 cd/m2 and CIE coordinates (0.35, 0.28).

  • PDF

Fabrication of a periodically poled MgO : $LiNbO_3$ ridge waveguide for a green laser generation (녹색 광 발진을 위한 주기적 분극 반전된 MgO : $LiNbO_3$ ridge waveguide 제작)

  • Yang, W.S.;Kwon, S.W.;Song, M.K.;Lee, H.M.;Kim, W.K.;Koo, K.H.;Yoon, D.H.;Lee, H.Y.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.4
    • /
    • pp.151-155
    • /
    • 2007
  • Quasi-phase-matched (QPM) second harmonic generation (SHG) waveguide devices for a green light generation were fabricated by a periodically patterned electrode on the +Z crystal surface and homogeneous LiCl solution using a 5 mol% MgO doped congruent z-cut lithium niobate crystals. Using selective chemical etching, we confirmed the periodic (${\sim}6.8{\mu}m$) domain inverted structure and measured SHG properties of fabricated periodically poled MgO : $LiNbO_3$ ridge-type waveguides.