• Title/Summary/Keyword: Quasi-dimensional

Search Result 413, Processing Time 0.034 seconds

Propulsion by Oscillating Foil Attached to Ship in Waves (동요하는 날개를 이용한 파랑 중 선박의 추력발생)

  • Choi, Yoon-Rak
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.31-36
    • /
    • 2013
  • In this paper, the effects of a foil attached to a ship on the ship motion, added resistance, and thrust generation in waves are analyzed. The unsteady theory for a two-dimensional foil is introduced to determine the coupled motion responses of the ship and foil. The thrust caused by the oscillating foil is evaluated and compared to the added resistance of the ship, so that a positive net thrust can be possible in waves. A comparison of the results of unsteady, quasi-steady, and experimental analyses is performed.

Optimum Design of EHF CPW using FDTD (시간영역유한차분법을 이용한 극초고주파용 CPW의 최적화 설계)

  • Jang, In-Bum;Lee, Joon-ung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.12
    • /
    • pp.1129-1132
    • /
    • 2005
  • The purpose of this reserch is to establish the new design technology for microwave Coplanar structure. The components in microwave circuit are classified to transmission devices, EM devices, and quasi-TEM devices. After design of these devices, we analyzed these CPWs electromagnetically using FDTD method, and suggested optimum CPW structure. In oder to realize a CPW module up to 30 GHz-100 GHz band, we research on a technology of 3-dimensional microwave CPW, and GaAs substrate with Si layer for ohmic loss. As a result this research, we suppressed the leakage, resonance, coupling, and radiation of CPW EMI, and improved resonance quality of CPW.

Modeling of random effects covariance matrix in marginalized random effects models

  • Lee, Keunbaik;Kim, Seolhwa
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.3
    • /
    • pp.815-825
    • /
    • 2016
  • Marginalized random effects models (MREMs) are often used to analyze longitudinal categorical data. The models permit direct estimation of marginal mean parameters and specify the serial correlation of longitudinal categorical data via the random effects. However, it is not easy to estimate the random effects covariance matrix in the MREMs because the matrix is high-dimensional and must be positive-definite. To solve these restrictions, we introduce two modeling approaches of the random effects covariance matrix: partial autocorrelation and the modified Cholesky decomposition. These proposed methods are illustrated with the real data from Korean genomic epidemiology study.

Design and Experimental Studies of Radial-Outflow Type Diagonal Flow Fan

  • Kinoue, Yoichi;Shiomi, Norimasa;Setoguchi, Toshiaki
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.18-24
    • /
    • 2013
  • In order to apply the design method of diagonal flow fan based on axial flow design to the design of radial-outflow type diagonal flow fan which has lower specific speed of 600-700 [$min^{-1}$, $m^3/min$, m], radial-outflow type diagonal flow fan which specific speed was 670 [$min^{-1}$, $m^3/min$, m] was designed by a quasi three-dimensional design method. Experimental investigations were conducted by fan characteristics test, flow surveys by a five-hole probe and a hot wire probe. Fan characteristics test agreed well with the design values. In the flow survey at rotor outlet, the characteristic region was observed. Two flow phenomena are considered as the cause of the characteristic region, one is tip leakage vortex near rotor tip and another is pressure surface separation on the rotor blade.

Analysis of the Three-Dimentional Effects on the Breakdown Voltage in Non-reachthrough Planar Junctions (Non-reachthrough 평면 접합의 항복전압에 대한 3 차원 효과의 해석)

  • 김성동;김일중;최연익;한민구
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.1
    • /
    • pp.111-118
    • /
    • 1995
  • The three-dimentional effects on the breakdown voltage of non-reachthrough planar junctions which have the finite lateral radius of window curvature are analytically investigated. The critical electric fields at breakdown and the breakdown voltages are expressed successfully in a form which is normalized to the parallel plane case. The analytical results are in excellent agreement with the published results of experiment and the quasi-three-dimensional device simulation by MEDICI for non-reachthrough plane junctions having different background doping and junction depth. The results may be applicable to the estimations of breakdown voltages in many practical power devices.

  • PDF

Aeroelastic Characteri stics of Rotor Blades with Trailing Edge Flaps

  • Lim, In-Gyu;Lee, In
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.115-121
    • /
    • 2007
  • The aeroelastic analysis of rotor blades with trailing edge flaps, focused on reducing vibration while minimizing control effort, are investigated using large deflection-type beam theory in forward flight. The rotor blade aerodynamic forces are calculated using two-dimensional quasi-steady strip theory. For the analysis of forward flight, the nonlinear periodic blade steady response is obtained by integrating the full finite element equation in time through a coupled trim procedure with a vehicle trim. The objective function, which includes vibratory hub loads and active flap control inputs, is minimized by an optimal control process. Numerical simulations are performed for the steady-state forward flight of various advance ratios. Also, numerical results of the steady blade and flap deflections, and the vibratory hub loads are presented for various advance ratios and are compared with the previously published analysis results obtained from modal analysis based on a moderate deflection-type beam theory.

PREDICTION OF AIRCRAFT FLOW FIELD EFFECT BY DIRECT CALCULATION OF INCREMENTAL COEFFICIENTS (증가 계수의 직접 계산법을 이용한 항공기 유동장 효과의 예측)

  • Kim, Eu-Gene;Kwon, Jang-Hyuk
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.41-46
    • /
    • 2006
  • When new weapons are introduced, the target points estimation is one of the important objectives in the flight test as well as the safe separation. The prediction methods help to design the flight test schedule. However, the incremental aerodynamic coefficients in the aircraft flow field so-called BSE are difficult to predict. Generally, the semiempirical methods such as the grid methods, IFM and Flow TGP using database are used for estimation of BSE. However, these methods are quasi-steady methods using static aerodynamic loads. Nowadays the time-accurate CFD method is often used to predict the store separation event. In the current process, the incremental aerodynamic coefficients in BSE regime are calculated directly, and the elimination of delta coefficients is checked simultaneously. This stage can be used for the initial condition of Flow TGP with freestream database. Two dimensional supersonic and subsonic store separation problems have been simulated and incremental coefficients are calculated. The results show the time when the store gets out of BSE region.

  • PDF

Aerodynamic Analysis and Design of Inline-Duct Fan (관류익형송풍기의 공력해석 및 설계)

  • Guo En-Min;Kim Kwang-Yong;Seo Seoung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.639-642
    • /
    • 2002
  • A tubular centrifugal fin is designed by using various methods of analysis and design. A preliminary design method based on empirical optimum curves for centrifugal fin is used to determine the geometric parameters for tubular centrifugal fan. And, Quasi-3D streamline curvature duct-flow analysis is used to provide the primary position of streamlines and spanwise distribution of flow angle f3r generation of blade geometry based on S1 surface. Three-dimensional CFD solution then is obtained to optimize the blade design. Constriction of flow path in the region of impeller, backward swept blade, and central cone, which are introduced to improve the design, successfully remove or suppress the vortices downstream of the impeller.

  • PDF

Non-Linear Ekman Pumping Model (비선형 에크만 분출 모델)

  • Park, Jae-Hyoun;Kim, Jung-Hwan;Kim, Dong-Kyun;Bae, Suk-Tae;Kim, Jung-Ryul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.305-306
    • /
    • 2006
  • Developed in this study is a nonlinear Ekman pumping model to be used in simulating the rotating flows with quasi-three-dimensional Navier-Stokes equations. In this model, the Ekman pumping velocity is given from the solution of the Ekman boundary-layer equations for the region adjacent to the bottom wall of the flow domain; the boundary-layer equations are solved in the momentum-integral form. The developed model is then applied to rotating flows in a rectangular container receiving a time-periodic forcing. By comparing our results with the DNS and experimental data we have validated the developed model. We also compared our results with those given from the classical Ekman pumping model. It was found that our model can predict tile rotating flows more precisely than the classical linear model.

  • PDF

A Aerodynamic Design of Mixed Flow Turbine of the Marine Turbocharger (박용 터보챠저 사류 터빈의 공력설계)

  • Kim, Hong-Won;Oh, Kook-Taek;Ghal, Sang-Hak;Ha, Ji-Soo
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.670-675
    • /
    • 2001
  • This paper describes aerodynamic preliminary design performance prediction and flow analysis for turbine of the marine middle engine turbocharger. The performance characteristics of turbocharger turbine are investigated at various operating conditions using mass flow rate and computational flow analysis for rotor and nozzle at design point are performed. Preliminary design results are performed by applying mean line and radial equilibrium theory. Performance prediction and flow analysis results show good agreement with experiments. From 3 dimensional flow analysis result, efficiency is 0.6% greater than design point. Therefore, this design approach is useful for preliminary design, and helps to increase the design capability for optimized rotor blade.

  • PDF