• Title/Summary/Keyword: Quasi-dimensional

Search Result 418, Processing Time 0.024 seconds

A Study on the Numerical Analysis of Welding Heat Distribution of Preflex Beam (유한요소법에 의한 PREFLEX BEAM의 용접열분포 특성에 관한 연구)

  • 방한서;주성민;김하식
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.2
    • /
    • pp.52-57
    • /
    • 2004
  • Preflex beam is a method of construction designed to hold the pre-compressive stresses over the concrete pier by the preflexion load. During the fabrication of the girder, welding causes residual stresses. The welding residual stresses must be relieved in order to generate the accurate compressive pre-stresses. In this study, to determine the thermal distribution characteristics on the girder by welding, both three-dimensional finite element analysis and two-dimensional finite element analysis, in a quasi-steady state, is carried out. After comparing each result between the three-dimensional analysis and the two-dimensional analysis, finite element analysis is carried out against the actual girder, and the welding thermal distribution characteristic over the preflex beam is analyzed. It is possible to provide the input data for the analysis of the welding residual stresses.

Hypersurfaces with quasi-integrable ( f, g, u, ʋ, λ) -structure of an odd-dimensional sphere

  • Ki, U-Hang;Cho, Jong-Ki;Lee, Sung Baik
    • Honam Mathematical Journal
    • /
    • v.4 no.1
    • /
    • pp.75-84
    • /
    • 1982
  • Let M be a complete and orientable hypersurface of an odd-dimensional sphere $S^{2n+1}$ with quasi-integrable $(f,\;g,\;u,\;{\nu},\;{\lambda})$ -structure. The purpose of the present paper is to prove the following two theorems. (I) If the scalar curvature of M is constant and the function $\lambda$ is not locally constant, then M is a great sphere $S^{2n}$(1) or a product of two spheres with the same dimension $S^{n}(1/\sqrt{2}){\times}S^{n}(1/\sqrt{2})$. (II) Suppose that the sectional curvature of the section $\gamma(u,\;{\nu})$ spanned by u and $\nu$ is constant on M and M is compact. If the second fundamental tensor H of M is positive semi-definite and satisfies trace $$^{t}HH{\leq_-}{2n}$$, then M is a great sphere $S^{2n}$ (1) or a product of two spheres $S^{n}{\times}S^{n}$ or $S^{p}{\times}S^{2n-p}$, p being odd.

  • PDF

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.19-26
    • /
    • 2011
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and flow quantity of fuel were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

Design of ceramics powder compaction process parameters (Part Ⅰ : Finite element analysis) (세라믹스 분말 가압 성형 공정 변수 설계(1부: 유한요소 해석))

  • Jung S. C.;Keum Y. T.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.1
    • /
    • pp.21-26
    • /
    • 2005
  • In order to simulate the powder compaction process and to assess the effects of packing randomness and particle arrangement 2-dimensional model of rod array compaction using quasi-random multiparticle array is introduced. The elastic modulus of porous ceramics is computed by the homogenization method. With 3 Al₂O₃ and 3 Al particles the compaction processes associated with the porosities are simulated by the explicit finite element method, based on the elastic modulus found by the homogenization method. The simulation results are compared with both previous analytical ones and experimental measurements. Finally, in order to find the relationship between the friction coefficient of powder particles and the relative density, the sensitivity analysis is performed.

Internal Flow Analyses of Diagonal Type Blowers Using a Quasi-3-Dimensional Method Considering Spanwise Mixing and Tip Clearance Effect Due to Secondary Flows (이차흐름에 의한 스팬방향의 믹싱효과와 선단틈새흐름을 고려한 준 삼차원 사류송풍기 내부흐름 해석)

  • Kim, Chan-Kyu;Jun, Yong-Du;Kim, Tae-Whan
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.137-146
    • /
    • 2002
  • This paper presents a quasi-3-dimensional calculation method considering secondary flows in the impellers of diagonal flow blowers. A Quantitative estimation of the secondary flow effects is made by using secondary flow theories. In order to verify the validity of the adopted models, that is, span-wise mixing model and the tip clearance model, numerical simulations are performed for two different types of impellers of diagonal flow blowers which are designed differently. Numerical experiments are conducted for each of a constant tangential velocity type impeller, and a free vortex type impeller, both at two different flow coefficients. According to the simulation results, it was found that the present model considering span-wise mixing and tip clearance effect shows better agreements with the experimental data than those without these models in terms of the flow velocity and the angle distribution.

  • PDF

Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je;Byun, Joon-Ho;Kim, Nam-Young;Kim, Jong-Heon;Lee, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.7
    • /
    • pp.1211-1217
    • /
    • 2000
  • The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

  • PDF

A Simplified Method for Determining Modal Strain Energy Release Rate of Free-Edge Delaminations in Laminated Composite (적층복합재의 자유단 박리에 대한 모드별 스트레인 에너지해방률의 간이계산법)

  • Kim, Taek-Hyun;Oh, Taek-Yul;Kim, In-Kweon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.3
    • /
    • pp.423-429
    • /
    • 1997
  • A simplified method for determining the mode components of the strain energy release rate of free-edge delaminations in laminated composite is proposed. The interlaminar stresses are evaluated as an interface moment and interface shear forces that are obtained from the equilibrium equations at the interface between the adjacent layers. Deformation of an edge-delaminated laminate is calculated by using a generalized quasi-three dimensional classical laminated plate theory developed by the authors. The analysis provides closed-form expression for the three components of the strain energy release rate. Comparison of results with a finite element solution using the virtual crack closure technique shows good agreement. In the present study, laminated composite with stacking sequences of [30/-30/90]$_{s}$ were examined. The simple nature of the method makes it suitable for primary design analysis for the delaminations of laminated composite.e.

Effects of thickness stretching in FGM plates using a quasi-3D higher order shear deformation theory

  • Adim, Belkacem;Daouadji, Tahar Hassaine
    • Advances in materials Research
    • /
    • v.5 no.4
    • /
    • pp.223-244
    • /
    • 2016
  • In this paper, a higher order shear and normal deformation theory is presented for functionally graded material (FGM) plates. By dividing the transverse displacement into bending, shear and thickness stretching parts, the number of unknowns and governing equations for the present theory is reduced, significantly facilitating engineering analysis. Indeed, the number of unknown functions involved in the present theory is only five, as opposed to six or even greater numbers in the case of other shear and normal deformation theories. The present theory accounts for both shear deformation and thickness stretching effects by a hyperbolic variation of ail displacements across the thickness and satisfies the stress-free boundary conditions on the upper and lower surfaces of the plate without requiring any shear correction factor. Equations of motion are derived from Hamilton's principle. Analytical solutions for the bending and free vibration analysis are obtained for simply supported plates. The obtained results are compared with three-dimensional and quasi- three-dimensional solutions and those predicted by other plate theories. It can be concluded that the present theory is not only accurate but also simple in predicting the bending and free vibration responses of functionally graded plates.

Improvement and validation of a flow model for conical vortices

  • Ye, Jihong;Dong, Xin
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.113-144
    • /
    • 2014
  • Separation bubble and conical vortices on a large-span flat roof were observed in this study through the use of flow visualization. The results indicated that separation bubble occurred when the flow was normal to the leading edge of the flat roof. Conical vortices that occur under the cornering flow were observed near the leading edge, and their appearance was influenced by the wind angle. When the wind changed from along the diagonal to deviating from the diagonal of the roof, the conical vortex close to the approaching flow changed from circular to be more oblong shaped. Based on the measured velocities in the conical vortices by flow visualization, a proposed two-dimensional vortex model was improved and validated by simplifying the velocity profile between the vortex and the potential flow region. Through measured velocities and parameters of vortices, the intensities of conical vortices and separation bubble on a large-span flat roof under different wind directions were provided. The quasi-steady theory was corrected by including the effect of vortices. With this improved two-dimensional vortex model and the corrected quasi-steady theory, the mean and peak suction beneath the cores of the conical vortices and separation bubble can be predicted, and these were verified by measured pressures on a larger-scale model of the flat roof.

A Study on the Combustion Performance with Variation of Fuel Injection Hole Configuration at Supersonic Combustion (초음속 연소에서 연료 분사구 형상에 따른 연소성능 변화에 대한 실험적 연구)

  • Lee, Kyung-Jae;Kang, Sang-Hun;Lee, Yang-Ji;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.423-431
    • /
    • 2010
  • In order to investigate the effect of fuel injection hole configuration within the scramjet combustor, experiment and quasi-one-dimensional analysis was performed. And the results were compared with experiment and analysis result which were performed in 2008 with same facility and test condition. Fuel injection hole size was decreased and quantity was increased. However the depth of fuel penetration and fuel flow were maintained. As a test result, combustion performance was increased significantly with no-cavity injector and slightly with plain-cavity. However, combustion performance with zigzag-cavity was decreased.

  • PDF