Analysis of Coplaner $LiNBO_3$ Waveguide Structures Applicable Electrooptic Modulator with FDTD method

  • Lee, Byung-Je (RFIC Research and Education Center & Mission Techvology Research Center, kwangwoon university) ;
  • Byun, Joon-Ho (Samsung Electronics Co. Ltd) ;
  • Kim, Nam-Young (RFIC Research and Education Center & Mission Techvology Research Center, kwangwoon university) ;
  • Kim, Jong-Heon (RFIC Research and Education Center & Mission Techvology Research Center, kwangwoon university) ;
  • Lee, Jong-Chul (RFIC Research and Education Center & Mission Techvology Research Center, kwangwoon university)
  • Published : 2000.10.01

Abstract

The three-dimensional finite-difference time-domain (FDTD) method and the two-dimensional quasi-static formulation have been used to calculate the characteristic impedance and the microwave effective index of coplanar waveguide structures on Lithium Niobate ($LiNBO_3$) single crystal substrates with a yttria-stabilized zirconia (YSZ) or $SiO_2$ buffer layer. The results shown can be a good source to predict the modulator characteristics. The effects of the thin buffer layer and anisotropy of the $LiNBO_3$ crystal (x-cut and z-cut) are discussed. The comparison between the FDTD and quasi-static results shows good agreement. In this paper, the efficient modeling technique of the FDTD method for the coplanar waveguide (CPW) structures based on an anisotropic substrate with a thin buffer layer is developed.

Keywords

References

  1. IEEE Trans. Microwave Theory Tech. v.39 Spectral-domain analysis of coplanar waveguide traveling-wave electrodes and their applications to Ti:LiNbO3 mach-zehnder optical modulators K. Kawano;T. Kitoh;H. Jumonji;T. Nozawa;M. Yanagibashi;T. Suzuki
  2. IEEE Photonics Technology Letters v.3 A Finite Element Method (FEM) Analysis of the shielded Velocity-Matched Ti_LiNbO3 Optical Modulator K. Kawano;K. Nogushi;T. Kitoh;H. Miyazawa
  3. IEEE Trans. Microwave Theory Tech. v.44 Ridge Coplanar Waveguide for Optical Amplitude Modulation W. A. Artuzi;T. Yoneyama
  4. IEEE Trans. Microwave Theory Tech. v.45 An Application of FDTD in Studying the End Effects of Slotline and Coplanar Waveguide with Anisotropic Substrate J. C. Goswami;R. Mittra
  5. Time-Domain Methods for Microwave Structures T. Itoh;B. Houshmand
  6. IEEE Trans. Antenn. Propagat. v.41 The finite-difference time-domain method applied to anisotropic material J. Schneider;S. Hudson
  7. IEEE Trans. Antenn. Propagat. v.37 Numerical analysis and validation of the combined surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects B. Beker;K. R. Umashankar;A. Taflove
  8. IEEE Trans. Antennas Propagation v.AP-14 Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media K. S. Yee
  9. IEEE Trans. Antennas Propagation v.39 Modeling of thin dielectric structures using finite difference time-domain technique P. A. Tirkas;K. R. Demarest
  10. IEEE Trans. Antennas Propagation v.40 The efficient modeling of thin material sheets in the finite-difference time-domain (FDTD) method J. G. Maloney;G. S. Smith
  11. IEEE MGWL v.5 Numerical Errors in the computation of Impedances by FDTD method and ways to eliminate them J. Fang;D. Xeu
  12. IEEE Journal of Quantum Electronics v.25 Electrostatic Field of Coplanar Lines Computed with the Point Match Method D. Marcuse