• Title/Summary/Keyword: Quasi-class $\mathcal{A}$ operator

Search Result 6, Processing Time 0.018 seconds

ON k-QUASI-CLASS A CONTRACTIONS

  • Jeon, In Ho;Kim, In Hyoun
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.85-89
    • /
    • 2014
  • A bounded linear Hilbert space operator T is said to be k-quasi-class A operator if it satisfy the operator inequality $T^{*k}{\mid}T^2{\mid}T^k{\geq}T^{*k}{\mid}T{\mid}^2T^k$ for a non-negative integer k. It is proved that if T is a k-quasi-class A contraction, then either T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative operator $D=T^{*k}({\mid}T^2{\mid}-{\mid}T{\mid}^2)T^k$ is strongly stable.

ON PROPERTIES OF QUASI-CLASS A OPERATORS

  • Lee, Jae Won;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • v.16 no.3
    • /
    • pp.349-353
    • /
    • 2008
  • Let the set of all quasi-class A operators for which $ker(A){\subseteq}ker(A^*)$ be denoted by $A{\in}{\mathcal{Q}}A^*$. In this paper it is proved that an operator $T{\in}{\mathcal{Q}}A^*$ is normal if and only if the Duggal transform of T is normal.

  • PDF

GENERALIZED WEYL'S THEOREM FOR ALGEBRAICALLY $k$-QUASI-PARANORMAL OPERATORS

  • Senthilkumar, D.;Naik, P. Maheswari;Sivakumar, N.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.4
    • /
    • pp.655-668
    • /
    • 2012
  • An operator $T\;{\varepsilon}\;B(\mathcal{H})$ is said to be $k$-quasi-paranormal operator if $||T^{k+1}x||^2\;{\leq}\;||T^{k+2}x||\;||T^kx||$ for every $x\;{\epsilon}\;\mathcal{H}$, $k$ is a natural number. This class of operators contains the class of paranormal operators and the class of quasi - class A operators. In this paper, using the operator matrix representation of $k$-quasi-paranormal operators which is related to the paranormal operators, we show that every algebraically $k$-quasi-paranormal operator has Bishop's property ($\beta$), which is an extension of the result proved for paranormal operators in [32]. Also we prove that (i) generalized Weyl's theorem holds for $f(T)$ for every $f\;{\epsilon}\;H({\sigma}(T))$; (ii) generalized a - Browder's theorem holds for $f(S)$ for every $S\;{\prec}\;T$ and $f\;{\epsilon}\;H({\sigma}(S))$; (iii) the spectral mapping theorem holds for the B - Weyl spectrum of T.

ON QUASI-CLASS A OPERATORS

  • Kim, In Hyoun;Duggal, B.P.;Jeon, In Ho
    • Korean Journal of Mathematics
    • /
    • v.19 no.2
    • /
    • pp.205-209
    • /
    • 2011
  • Let $\mathcal{QA}$ denote the class of bounded linear Hilbert space operators T which satisfy the operator inequality $T^*|T^2|T{\geq}T^*|T|^2T$. Let $f$ be an analytic function defined on an open neighbourhood $\mathcal{U}$ of ${\sigma}(T)$ such that $f$ is non-constant on the connected components of $\mathcal{U}$. We generalize a theorem of Sheth [10] to $f(T){\in}\mathcal{QA}$.

WEYL'S THEOREM AND TENSOR PRODUCT FOR OPERATORS SATISFYING T*k|T2|Tk≥T*k|T|2Tk

  • Kim, In-Hyoun
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.351-361
    • /
    • 2010
  • For a bounded linear operator T on a separable complex infinite dimensional Hilbert space $\mathcal{H}$, we say that T is a quasi-class (A, k) operator if $T^{*k}|T^2|T^k\;{\geq}\;T^{*k}|T|^2T^k$. In this paper we prove that if T is a quasi-class (A, k) operator and f is an analytic function on an open neighborhood of the spectrum of T, then f(T) satisfies Weyl's theorem. Also, we consider the tensor product for quasi-class (A, k) operators.

ON OPERATORS SATISFYING Tm(T|T|2kT)1/(k+1)Tm ≥ Tm|T|2Tm

  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.661-676
    • /
    • 2017
  • Let T be a bounded linear operator acting on a complex Hilbert space ${\mathfrak{H}}$. In this paper we introduce the class, denoted ${\mathcal{Q}}(A(k),m)$, of operators satisfying $T^{m{\ast}}(T^{\ast}{\mid}T{\mid}^{2k}T)^{1/(k+1)}T^m{\geq}T^{{\ast}m}{\mid}T{\mid}^2T^m$, where m is a positive integer and k is a positive real number and we prove basic structural properties of these operators. Using these results, we prove that if P is the Riesz idempotent for isolated point ${\lambda}$ of the spectrum of $T{\in}{\mathcal{Q}}(A(k),m)$, then P is self-adjoint, and we give a necessary and sufficient condition for $T{\otimes}S$ to be in ${\mathcal{Q}}(A(k),m)$ when T and S are both non-zero operators. Moreover, we characterize the quasinilpotent part $H_0(T-{\lambda})$ of class A(k) operator.