• Title/Summary/Keyword: Quasi-Static Loads

Search Result 117, Processing Time 0.023 seconds

Conceptual Design of Structure Subsystem for Geo-stationary Multi-purpose Satellite (정지궤도복합위성 구조계 개념설계)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Kim, Sung-Hoon
    • Journal of Satellite, Information and Communications
    • /
    • v.7 no.3
    • /
    • pp.110-115
    • /
    • 2012
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe launch environments. The launch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. Currently KARI(Korea Aerospace Research Institute) is developing Geo-KOMPSAT-2(Geostationary Earth Orbit KOrea Multi-Purpose Satellite) with technologies which were acquired during COMS(Communication, Ocean and Meteorological Satellite) development. As compared to COMS Geo-KOMPSAT-2 requires more propellant due to mass increase of Advanced Meteorological Payload with high resolution and increase of miss life, it is difficult to apply the design concept of COMS to Geo-KOMPSAT-2. This paper deals with conceptual design of Structural Subsystem for Geo-KOMPSAT-2.

Analysis of Sine Test Results with Prediction for Geo-stationary Satellite (정지궤도 위성의 정현파 가진 시험과 예측 비교)

  • Kim, Chang-Ho;Kim, Kyung-Won;Kim, Sun-Won;Lim, Jae-Hyuk;Hwang, Do-Soon
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Satellite structure should be designed to accommodate and support safely the payload and equipments necessary for its own missions and to secure satellite and payloads from severe laucnch enviroments. The lauch environments imposed on satellites are quasi-static accelerations, aerodynamic loads, acoustic loads and shock loads. To qualify the structure design against low-frequency dyanmic enviromnent, sine vibration test should be performed. During sine vibration test, the notchings are implemented in order to keep the payloads and equipments from excessive loading at their own main modes. This paper deals with sine test prediction, sine vibration test results, comparison of predicted values and tested values, and verification of Finite Element Model.

Quasi-Static Analysis of Block Impact Against the Ground Due to Sling Failure During Block Lifting (권상 작업 중 슬링 파손으로 인한 블록 지상 낙하 충격에 대한 준정적 해석)

  • Kim, Seon-Yeob;Lee, Tak-Kee;Yoon, Jung-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.2
    • /
    • pp.84-89
    • /
    • 2021
  • Recently, shipyards are making many efforts to reduce the number of the mounted blocks by increasing the block size. This is to improve productivity and reduce related costs by minimizing block movement and shortening the building period. However, as the blocks become larger, the weight increases considerably. If the target block has a damage due to an unexpected accident during block lifting, it may seriously cause a problem of the reusability of the block. In this study, a large-sized block of the offshore structure weighing 480 tons was lifting with a total of seven sling belts, and one sling belt was broken while it was moving, resulting in a situation in which a part of the edge of the block collided with the ground. The aim of this paper is to verify the structural integrity of the block that directly collides with the ground in the form of free fall due to the sling breakage. Considering that the hook loads acting on several sling belts holding the block are redistributed when a sling belt is broken, the hook loads were recalculated at the angle just before the sling breakage. These loads were used to check the safety of the sling belts. In addition, FE analysis was performed by calculating the amount of impact from the free fall condition, obtaining the impact area by using Hertz's contact theory, and then applying the impact load to the area.

Unified modelling approach with concrete damage plasticity model for reliable numerical simulation: A study on thick flat plates under eccentric loads

  • Mohamed H. El-Naqeeb;Reza Hassanli
    • Computers and Concrete
    • /
    • v.34 no.3
    • /
    • pp.307-328
    • /
    • 2024
  • The concrete damage plasticity (CDP) model is widely used to simulate concrete behaviour using either implicit or explicit analysis methods. To effectively execute the models and resolve convergence issues in implicit analysis, activating the viscosity parameter of this material model is a common practice. Despite the frequent application of implicit analysis to analyse concrete structures with the CDP model, the viscosity parameter significantly varies among available models and lacks consistency. The adjustment of the viscosity parameter at the element/structural level disregards its indirect impact on the material. Therefore, the accuracy of the numerical model is confined to the validated range and might not hold true for other values, often explored in parametric studies subsequent to validations. To address these challenges and develop a unified numerical model for varied conditions, a quasi-static analysis using the explicit solver was conducted in this study. Fifteen thick flat plates tested under load control with different geometries and different eccentric loads were considered to verify the accuracy of the model. The study first investigated various concrete material behaviours under compression and tension as well as the concrete tensile strength to identify the most reliable models from previous methodologies. The study compared the results using both implicit and explicit analysis. It was found that, in implicit analysis, the viscosity parameter should be as low as 0.0001 to avoid affecting material properties. However, at the structural level, the optimum value may need adjustment between 0.00001 to 0.0001 with changing geometries and loading type. This observation raises concerns about further parametric study if the specific value of the viscosity parameter is used. Additionally, activating the viscosity parameter in load control simulations confirmed its inability to capture the peak load. Conversely, the unified explicit model accurately simulated the behaviour of the test specimens under varying geometries, load eccentricities, and column sizes. This study recommends restricting implicit solutions to the viscosity values proposed in this research. Alternatively, for highly nonlinear problems under load control simulation, explicit analysis stands as an effective approach, ensuring unified parameters across a wide range of applications without convergence problems.

Static Aeroelastic Analysis of Hingeless Rotor System in Hover Using Free-Wake Method (자유후류기법을 이용한 무힌지 로터 시스템의 정지비행시 정적 공탄성 해석)

  • Yoo, Seung-Jae;Lim, In-Gyu;Lee, In;Kim, Do-Hyung;Kim, Doeg-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.2
    • /
    • pp.156-162
    • /
    • 2008
  • The static aeroelastic analysis of composite hingeless rotor blades in hover was performed using free-wake method. Large deflection beam theory was applied to analyze blade motions as a one-dimension beam. Anisotropic beam theory was applied to perform a cross-sectional analysis for composite rotor blades. Aerodynamic loads were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. The wake geometry in hover was described using a time-marching free-wake method. Numerical results of the steady-state deflections for the composite hingeless rotor blades were presented and compared with those results based on two-dimensional quasi-steady strip theory and prescribed wake method. It was shown that wakes affect the steady-state deflections.

A refined quasi-3D hybrid-type higher order shear deformation theory for bending and Free vibration analysis of advanced composites beams

  • Meradjah, Mustapha;Bouakkaz, Khaled;Zaoui, Fatima Zohra;Tounsi, Abdelouahed
    • Wind and Structures
    • /
    • v.27 no.4
    • /
    • pp.269-282
    • /
    • 2018
  • In this paper, a new displacement field based on quasi-3D hybrid-type higher order shear deformation theory is developed to analyze the static and dynamic response of exponential (E), power-law (P) and sigmoïd (S) functionally graded beams. Novelty of this theory is that involve just three unknowns with including stretching effect, as opposed to four or even greater numbers in other shear and normal deformation theories. It also accounts for a parabolic distribution of the transverse shear stresses across the thickness, and satisfies the zero traction boundary conditions at beams surfaces without introducing a shear correction factor. The beam governing equations and boundary conditions are determined by employing the Hamilton's principle. Navier-type analytical solutions of bending and free vibration analysis are provided for simply supported beams subjected to uniform distribution loads. The effect of the sigmoid, exponent and power-law volume fraction, the thickness stretching and the material length scale parameter on the deflection, stresses and natural frequencies are discussed in tabular and graphical forms. The obtained results are compared with previously published results to verify the performance of this theory. It was clearly shown that this theory is not only accurate and efficient but almost comparable to other higher order shear deformation theories that contain more number of unknowns.

Influence of micromechanical models on the bending response of bidirectional FG beams under linear, uniform, exponential and sinusoidal distributed loading

  • Meksi, Abdeljalil;Benyoucef, Samir;Sekkal, Mohamed;Bouiadjra, Rabbab Bachir;Selim, Mahmoud M.;Tounsi, Abdelouahed;Hussain, Muzamal
    • Steel and Composite Structures
    • /
    • v.39 no.2
    • /
    • pp.215-228
    • /
    • 2021
  • This paper investigates the effect of micromechanical models on the bending behavior of bidirectional functionally graded (BDFG) beams subjected to different mechanical loading. The material properties of the beam are considered to be graded in both axial and thickness directions according to a power law. The beam's behavior is modeled by the mean of quasi 3D displacement field that contain undetermined integral terms and involves a reduced unknown functions. Navier's method is employed to determine and compute the displacements and stress for a simply supported beam. Different homogenization schemes such as Voigt, Reus, and Mori-Tanaka are employed to analyze the response of the BDFG beam subjected to linear, uniform, exponential and sinusoidal distributed loading. The results obtained by the present method are compared with available results in the literature and a good agreement was found. Several numerical results are presented in tabular form and in figures to examine the effects of the material gradation, micromechanical models and types of loading on the bending response of BDFG beams. It can be concluded that the present theory is not only accurate but also simple in predicting the bending response of BDFG beam subjected to different static loads.

Impact of viscoelastic foundation on bending behavior of FG plate subjected to hygro-thermo-mechanical loads

  • Ismail M. Mudhaffar;Abdelbaki Chikh;Abdelouahed Tounsi;Mohammed A. Al-Osta;Mesfer M. Al-Zahrani;Salah U. Al-Dulaijan
    • Structural Engineering and Mechanics
    • /
    • v.86 no.2
    • /
    • pp.167-180
    • /
    • 2023
  • This work applies a four-known quasi-3D shear deformation theory to investigate the bending behavior of a functionally graded plate resting on a viscoelastic foundation and subjected to hygro-thermo-mechanical loading. The theory utilizes a hyperbolic shape function to predict the transverse shear stress, and the transverse stretching effect of the plate is considered. The principle of virtual displacement is applied to obtain the governing differential equations, and the Navier method, which comprises an exponential term, is used to obtain the solution. Novel to the current study, the impact of the viscoelastic foundation model, which includes a time-dependent viscosity parameter in addition to Winkler's and Pasternak parameters, is carefully investigated. Numerical examples are presented to validate the theory. A parametric study is conducted to study the effect of the damping coefficient, the linear and nonlinear loadings, the power-law index, and the plate width-tothickness ratio on the plate bending response. The results show that the presence of the viscoelastic foundation causes an 18% decrease in the plate deflection and about a 10% increase in transverse shear stresses under both linear and nonlinear loading conditions. Additionally, nonlinear loading causes a one-and-a-half times increase in horizontal stresses and a nearly two-times increase in normal transverse stresses compared to linear loading. Based on the article's findings, it can be concluded that the viscosity effect plays a significant role in the bending response of plates in hygrothermal environments. Hence it shall be considered in the design.

Seismic Performance of a Hollow Composite Column (강합성 중공 기둥의 내진 성능)

  • Han, Taek Hee;Kim, Jung Hun;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.215-226
    • /
    • 2008
  • A column test was performed for a hollow composite column to evaluate its seismic performance. The seismic performances of a hollow composite column and a reinforced concrete (RC) column were evaluated and compared by quasi-static tests. Lateral displacements and lateral loads of the column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, and damage indices were calculated from the recorded data. From the test results, the hollow composite column showed a seismic performance superior to the column in terms of double moment capacity, ultimate energy, and energy absorption.

Experimental and analytical investigation on RC columns with distributed-steel bar

  • Ye, Mao;Pi, Yinpei;Ren, Min
    • Structural Engineering and Mechanics
    • /
    • v.47 no.6
    • /
    • pp.741-756
    • /
    • 2013
  • Distributed-Steel Bar Reinforced Concrete (DSBRC) columns, a new and innovative construction technique for composite steel and concrete material which can alleviate the difficulty in the arrangement of the stirrup in the column, were studied experimentally and analytically in this paper. In addition, an ordinary steel Reinforced Concrete (SRC) column was also tested for comparison purpose. The specimens were subjected to quasi-static load reversals to model the earthquake effect. The experimental results including the hysteresis curve, resistance recession, skeleton curves and ductility ratio of columns were obtained, which showed well resistant-seismic behavior for DSBRC column. Meanwhile a numerical three-dimensional nonlinear finite-element (FE) analysis on its mechanical behavior was also carried out. The numerically analyzed results were then compared to the experimental results for validation. The parametric studies and investigation about the effects of several critical factors on the seismic behavior of the DSBRC column were also conducted, which include axial compression ratios, steel ratio, concrete strength and yield strength of steel bar.