DOI QR코드

DOI QR Code

Unified modelling approach with concrete damage plasticity model for reliable numerical simulation: A study on thick flat plates under eccentric loads

  • Mohamed H. El-Naqeeb (Badr University in Cairo, School of Engineering and Technology) ;
  • Reza Hassanli (University of South Australia, UniSA STEM)
  • Received : 2023.12.22
  • Accepted : 2024.02.14
  • Published : 2024.09.25

Abstract

The concrete damage plasticity (CDP) model is widely used to simulate concrete behaviour using either implicit or explicit analysis methods. To effectively execute the models and resolve convergence issues in implicit analysis, activating the viscosity parameter of this material model is a common practice. Despite the frequent application of implicit analysis to analyse concrete structures with the CDP model, the viscosity parameter significantly varies among available models and lacks consistency. The adjustment of the viscosity parameter at the element/structural level disregards its indirect impact on the material. Therefore, the accuracy of the numerical model is confined to the validated range and might not hold true for other values, often explored in parametric studies subsequent to validations. To address these challenges and develop a unified numerical model for varied conditions, a quasi-static analysis using the explicit solver was conducted in this study. Fifteen thick flat plates tested under load control with different geometries and different eccentric loads were considered to verify the accuracy of the model. The study first investigated various concrete material behaviours under compression and tension as well as the concrete tensile strength to identify the most reliable models from previous methodologies. The study compared the results using both implicit and explicit analysis. It was found that, in implicit analysis, the viscosity parameter should be as low as 0.0001 to avoid affecting material properties. However, at the structural level, the optimum value may need adjustment between 0.00001 to 0.0001 with changing geometries and loading type. This observation raises concerns about further parametric study if the specific value of the viscosity parameter is used. Additionally, activating the viscosity parameter in load control simulations confirmed its inability to capture the peak load. Conversely, the unified explicit model accurately simulated the behaviour of the test specimens under varying geometries, load eccentricities, and column sizes. This study recommends restricting implicit solutions to the viscosity values proposed in this research. Alternatively, for highly nonlinear problems under load control simulation, explicit analysis stands as an effective approach, ensuring unified parameters across a wide range of applications without convergence problems.

Keywords

References

  1. Abdullah, R., Paton Cole, V.P. and Easterling, W.S. (2007), "Quasi-static analysis of composite slab", Malaysian J. Civil Eng., 19(2), 91-103. https://doi.org/10.11113/mjce.v19.15748.
  2. Akkaya, S.T., Mercimek, O., Ghoroubi, R., Anil, O., Erbas, Y. and Yilmaz, T. (2022), "Experimental, analytical, and numerical investigation of punching behaviour of two-way RC slab with multiple openings", Struct., 43, 574-593. https://doi.org/10.1016/j.istruc.2022.06.070.
  3. Al-Rousan, R.Z. and Bara'a, R.A. (2023), "Punching shear code provisions examination against the creation of an opening in existed RC flat slab of various sizes and locations", Struct., 49, 875-888. https://doi.org/10.1016/j.istruc.2023.02.007.
  4. Albrifkani, S. and Wang, Y.C. (2016), "Explicit modelling of large deflection behaviour of restrained reinforced concrete beams in fire", Eng. Struct., 121, 97-119. https://doi.org/10.1016/j.engstruct.2016.04.032.
  5. Ali, O., Abbas, A., Khalil, E. and Bigaud, D. (2023), "A new robust equation for shear strength of GFRP-RC deep beams using hybrid experimental and synthetic data based-FE quasi-static analysis procedure", Eng. Struct., 293, 116652. https://doi.org/10.1016/j.engstruct.2023.116652.
  6. Alrousan, R.Z. and Bara'a, R.A. (2022), "The influence of concrete compressive strength on the punching shear capacity of reinforced concrete flat slabs under different opening configurations and loading conditions", Struct., 44, 101-119. https://doi.org/10.1016/j.istruc.2022.07.091.
  7. Alrousan, R.Z. and Bara'a, R.A. (2022), "Punching shear behavior of FRP reinforced concrete slabs under different opening configurations and loading conditions", Case Stud. Constr. Mater., 17, e01508. https://doi.org/10.1016/j.cscm.2022.e01508.
  8. Amirkhani, S. and Lezgy-Nazargah, M. (2022), "Nonlinear finite element analysis of reinforced concrete columns: Evaluation of different modeling approaches for considering stirrup confinement effects", Struct. Concrete, 23(5), 2820-2836. https://doi.org/10.1002/suco.202100532.
  9. Arabzadeh, H. and Galal, K. (2015), "Effectiveness of FRP wraps for retrofitting of existing RC shear walls", Proceeding of the 11th Canadian Conference on Earthquake Engineering, Victoria, BC, Canada, July.
  10. Beaulieu, P.M. and Polak, M.A. (2023), "Finite element model for concrete slab-column connections with shear reinforcement", J. Struct. Eng., 149(12), 04023177. https://doi.org/10.1061/jsendh.steng-12386.
  11. Carreira, D.J. and Chu, K.H. (1985), "Stress-strain relationship for plain concrete in compression", ACI Struct. J., 82(6), 797-804. https://doi.org/10.14359/10390.
  12. CEB-FIP (1993), CEB-FIP Model Code 1990: Design Code, fib, Lausanne, Switzerland.
  13. American Concrete Institute (2019), Building Code Requirements for Structural Concrete (ACI 318-19) and Commentary, American Concrete Institute, Farmington Hills, MI, USA.
  14. De Sousa, A.M., Lantsoght, E.O., Genikomsou, A.S., Prado, L.P. and Mounir, K. (2023), "NLFEA of one-way slabs in transition between shear and punching: Recommendations for modeling", Eng. Struct., 293, 116617. https://doi.org/10.1016/j.engstruct.2023.116617.
  15. Dinh, P.T., Doh, J.H., Fragomeni, S., Ho, N.M. and Peters, T. (2023), "Numerical modeling techniques and investigation into the flexural behavior of two-way posttensioned concrete slabs with profiled steel sheeting", Struct. Concrete, 24(2), 2674-2698, https://doi.org/10.1002/suco.202200180.
  16. El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Nonlinear finite element investigations on different configurations of exterior beam-column connections with different concrete strengths in column and floor", Struct., 50, 1809-1826. https://doi.org/10.1016/j.istruc.2023.02.122.
  17. El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Numerical assessment of punching shear strength of eccentrically loaded footings with nonconventional shear reinforcement", Struct., 49, 716-729. https://doi.org/10.1016/j.istruc.2023.01.147.
  18. El-Naqeeb, M.H. and Abdelwahed, B.S. (2023), "Numerical investigations on punching shear behavior of eccentrically loaded reinforced concrete footings", Eng. Struct., 279, 115598. https://doi.org/10.1016/j.engstruct.2023.115598.
  19. El-Naqeeb, M.H., El-Metwally, S.E. and Abdelwahed, B.S. (2022), "Performance of exterior beam-column connections with innovative bar anchorage schemes: Numerical investigation", Struct., 44, 534-547. https://doi.org/10.1016/j.istruc.2022.08.034.
  20. Genikomsou, A.S. and Polak, M.A. (2015), "Finite element analysis of punching shear of concrete slabs using damaged plasticity model in ABAQUS", Eng. Struct., 98, 38-48. https://doi.org/10.1016/j.engstruct.2015.04.016.
  21. Hamoda, A. and Hossain, K. (2019), "Numerical assessment of slab-column connection additionally reinforced with steel and CFRP bars", Arab. J. Sci. Eng., 44, 8181-8204. https://doi.org/10.1007/s13369-019-03846-2.
  22. Hognestad, E. (1951), "Study of combined bending and axial load in RC members", Engineering Experimental Station Bulletin Series No. 399, University of Illinois, Champaign, IL.
  23. Husem, M. and Cosgun, S.I. (2016), "Behavior of reinforced concrete plates under impact loading: Different support conditions and sizes", Comput. Concrete, 18(3), 389-404. https://doi.org/10.12989/cac.2016.18.3.389.
  24. Jankowiak, T. and Lodygowski, T. (2005), "Identification of parameters of concrete damage plasticity constitutive model", Found. Civil Environ. Eng., 6(1), 53-69.
  25. Lee, S.H., Abolmaali, A., Shin, K.J. and Lee, H.D. (2020), "ABAQUS modeling for post-tensioned reinforced concrete beams", J. Build. Eng., 30, 101273. https://doi.org/10.1016/j.jobe.2020.101273.
  26. Liu, C., Yang, Y., Wang, J.J., Fan, J.S., Tao, M.X. and Mo, Y. (2020), "Biaxial reinforced concrete constitutive models for implicit and explicit solvers with reduced mesh sensitivity", Eng. Struct., 219, 110880. https://doi.org/10.1016/j.engstruct.2020.110880.
  27. Liu, X., Bradford, M.A., Chen, Q.J. and Ban, H. (2016), "Finite element modelling of steel-concrete composite beams with high-strength friction-grip bolt shear connectors", Finite Elem. Anal. Des., 108, 54-65. https://doi.org/10.1016/j.finel.2015.09.004.
  28. Massicotte, B., Elwi, A.E. and MacGregor, J.G. (1990), "Tension-stiffening model for planar reinforced concrete members", J. Struct. Eng., 116(11), 3039-3058. https://doi.org/10.1061/(asce)0733-9445(1990)116:11(3039).
  29. Mercimek, O., Ghoroubi, R., Erbas, Y. and Anil, O. (2022), "Comparison of strengthening methods to improve punching behavior of two-way RC flat slabs", Struct., 46, 1495-1516. https://doi.org/10.1016/j.istruc.2022.11.018.
  30. Michal, S. and Andrzej, W. (2015), "Calibration of the CDP model parameters in Abaqus", The 2015 World Congress on Advances in Structual Engineering and Mechanics, Incheon, Korea, August.
  31. Neuberger, Y.M., Andrade, M.V., de Sousa, A.M.D., Bandieira, M., da Silva Junior, E.P., dos Santos, H.F., Catoia, B., Bolandim, E.A., de Moura Aquino, V.B. and Christoforo, A.L. (2023), "Numerical analysis of reinforced concrete corbels using concrete damage plasticity: Sensitivity to material parameters and comparison with analytical models", Build., 13(11), 2781. https://doi.org/10.3390/buildings13112781.
  32. Othman, H. and Marzouk, H. (2017), "Finite-element analysis of reinforced concrete plates subjected to repeated impact loads", J. Struct. Eng., 143(9), 04017120. https://doi.org/10.1061/(asce)st.1943-541x.0001852.
  33. Panahi, H. and Genikomsou, A.S. (2022), "Comparative evaluation of concrete constitutive models in non-linear finite element simulations of slabs with different flexural reinforcement ratios", Eng. Struct., 252, 113617. https://doi.org/10.1016/j.engstruct.2021.113617.
  34. Raza, A. and Ahmad, A. (2019), "Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS", Adv. Civil Eng., 2019(1), 1745341. https://doi.org/10.1155/2019/1745341.
  35. Raza, A. and Ahmad, A. (2020), "Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets", Comput. Concrete, 25(5), 383-400. https://doi.org/10.12989/cac.2020.25.5.383.
  36. Simulia (2020), Simulia, Dassault Systemes Simulia Corp., Providence, RI, USA.
  37. Thorenfeldt, E. (1987), "Mechanical properties of high-strength concrete and applications in design", Symposium Proceedings, Utilization of High-Strength Concrete, Stavanger, Norway, June.
  38. Tysmans, T., Wozniak, M., Remy, O. and Vantomme, J. (2015), "Finite element modelling of the biaxial behaviour of high-performance fibre-reinforced cement composites (HPFRCC) using Concrete Damaged Plasticity", Finite Elem. Anal. Des., 100, 47-53. https://doi.org/10.1016/j.finel.2015.02.004.
  39. Ungermann, J., Schmidt, P., Christou, G. and Hegger, J. (2022), "Eccentric punching tests on column bases-Influence of column geometry", Struct. Concrete, 23(3), 1316-1332. https://doi.org/10.1002/suco.202100744.
  40. Ungermann, J., Schmidt, P., Classen, M. and Hegger, J. (2022), "Eccentric punching tests on column bases-new insights into the inner concrete strain development", Eng. Struct., 262, 114273. https://doi.org/10.1016/j.engstruct.2022.114273.
  41. Wang, T. and Hsu, T.T. (2001), "Nonlinear finite element analysis of concrete structures using new constitutive models", Comput. Struct., 79(32), 2781-2791. https://doi.org/10.1016/s0045-7949(01)00157-2.
  42. Wosatko, A., Pamin, J. and Polak, M.A. (2015), "Application of damage-plasticity models in finite element analysis of punching shear", Comput. Struct., 151, 73-85. https://doi.org/10.1016/j.compstruc.2015.01.008.
  43. Yu, P., Ren, Z., Chen, Z. and Bordas, S.P.A. (2023), "A multiscale finite element model for prediction of tensile strength of concrete", Finite Elem. Anal. Des., 215, 103877. https://doi.org/10.1016/j.finel.2022.103877.
  44. Zheng, B., Zheng, W., Cao, B. and Zhang, Y. (2023), "Nonlinear finite element analysis of non-symmetrical punching shear of rectangular flat slabs supported on square columns", Eng. Struct., 277, 115451. https://doi.org/10.1016/j.engstruct.2022.115451.
  45. Zheng, B., Zheng, W., Wang, L. and Zhang, Y. (2023), "Effect of column size on punching behavior of flat slabs with square columns: Numerical investigation", J. Build. Eng., 79, 107937. https://doi.org/10.1016/j.jobe.2023.107937.