• Title/Summary/Keyword: Quasi-Periodic Flow

Search Result 29, Processing Time 0.02 seconds

Numerical simulation on laminar flow past an oscillating circular cylinder (주기 회전하는 원형주상체 주위 유동장의 수치 시뮬레이션)

  • MOON JIN-KOOK;PARK JONG-CHON;CHUN HO-HWAN
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.210-211
    • /
    • 2004
  • The effect of oscillating on the unsteady laminar flow past a circular cylinder is numerically investigated in the present study. Our study is to analyze the vortex formation behind a circular cylinder for different rotary oscillation conditions. And then we are study to portray the unsteady dynamics of wake flows. We decide lock-on region by observing the phase switching phenomena We classify the vortex formation patterns in the primary lock-on region The present study is to identify the quasi-periodic state around lock-on region. At the boundary between lock-on and non-lock-on the shedding frequency is bifurcated. After the bifurcation, one frequency follow the forcing frequency ($S_f$) and the other returns to the natural shedding frequency ($St_0$). In the quasi-periodic state, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

  • PDF

Chaotic vibration characteristics of Vertical Axis Wind Turbine (VAWT) shaft system

  • C.B. Maheswaran;R. Gopal;V.K. Chandrasekar;S. Nadaraja Pillai
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.215-220
    • /
    • 2023
  • We study the progressive full-scale wind tunnel tests on a high solidity vertical axis wind turbine (VAWT) for various tip speeds and pitch angles to understand the VAWT shaft system's dynamics using 0-1 Test for chaos. We identify that while varying rotor speed (tip speed) of the turbine, the system's dynamics change from periodic to chaotic through quasiperiodic and strange non-chaotic (SNA) states. The present study is the first experimental evidence for the existence of these states in the VAWT shaft system to the best of our knowledge. Using the asymptotic growth value Kc in 0-1 test, when the turbine operates at the low tip speeds and high pitch angles for low incoming wind speeds, the system behaves periodic (Kc ≈ 0). However, when the incoming wind speed increases further the system's dynamics shift from periodic to chaotic vibrations through quasi-periodic and SNA. This phenomenon is due to the dynamic stalling of blades which induces chaotic vibration in the VAWT shaft system. Further, the singular continuous spectrum method validates the presence of SNA and differentiates the SNA from chaotic vibrations.

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Time-dependent natural convection in a glass melting furnace (유리용융로의 시간종속 자연대류)

  • Im, Gwang-Ok;Lee, Gwan-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.7
    • /
    • pp.919-927
    • /
    • 1997
  • The main purpose of this study is to determine bifurcation as the primary instability of a glass melting furnace. Steady-state and unsteady characteristics of natural convection in the partially open cavity as appeared in a glass melting furnace is investigated by using numerical analysis. Three types of convection, such as steady laminar, unsteady periodic or unsteady quasi-periodic convection may occur according to the temperature difference between upper two isothermal surfaces along the depth of cavity in a glass melting furnace. In the temperature difference of 150-900 K between batch and free surface, the larger the temperature difference, the weaker the convection strength and unsteadiness. Since the glass viscosity is increasing exponentially in the lower temperature, the batch freezes the thermofluidic field especially below the surface of it. If the depth of cavity is 0.5 m, the bifurcation to time-dependent natural convection may occur in the range of 60-650 K. If that is 1.0 m, it may occur in the whole range of temperature difference.

Numerical Simulation on Laminar Flow Past a Rotary Oscillating Circular Cylinder (주기 회전하는 원형 실린더 주위 층류 유동장의 수치 시뮬레이션)

  • Park, Jong-Chun;Moon, Jin-Kuk;Chun, Ho-Hwan;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.368-378
    • /
    • 2005
  • The effects of rotary oscillation on the unsteady laminar flow past a circular cylinder. are numerically investigated in the present study. The numerical solutions for the 20 Wavier-Stokes equation are obtained using a finite volume method Tn the framework of an overlapping grid system. The vortex formation behind a circular cylinder and the hydrodynamics of wake flows for different rotary oscillation conditions are analyzed from the results of numerical simulation. The lock-on region is defined as the region that the natural shedding frequency due to the Karmann Vortex shedding and the forcing frequency due to the forced oscillating a cylinder are nearly same, and the quasi-periodic states are observed around that region. At the intersection between lock-on and non-lock-on region the shedding frequency is bifurcated. After the bifurcation, one frequency fellows the forcing frequency($S_f$) and the other returns to the natural shedding frequency($St_0$). in the quasi-periodic states, the variation of magnitudes and relevant phase changes of $C_L$ with forcing phase are examined.

On the Structures of Taylor Vortices. (Taylor Vortex의 구조에 대한 연구)

  • Hwang, Jong-Yeon;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1081-1088
    • /
    • 2003
  • Numerical investigation on the structures of various Taylor vortices induced in the flow between two concentric cylinders, with the inner one rotating and with a pressure-driven axial flow imposed, is carried out, and compared with the experiments of Wereley and Lueptow [Phys. fluid, 11(12), 1999] who studied the Taylor vortices using PIV in detail. Especially, the properties of helical vortices and random wavy vortices are discussed, and their three-dimensional structures are visualized using the numerical data. Our simulation also predicts that random wavy vortices have quasi-periodic movement which can be explained by traveling waves formed in the azimuthal direction. The numerical results are well consistent with the experimental findings of Wereley and Lueptow.

New Instabilities in Accretion Flows onto Black Holes

  • MOLTENI D.;FAUCI F.;GERARDI G.;BISIKALO D.;KUZNETSOV O.;ACHARYA K.;CHAKRABARTI S.
    • Journal of The Korean Astronomical Society
    • /
    • v.34 no.4
    • /
    • pp.247-249
    • /
    • 2001
  • The accretion disks are usually supposed symmetric to reflection on the Z=0 plane. Asymmetries in the flow are be ver-y small in the vicinity of the compact accretor. However their existence can have a important role in the case of subkeplerian accretion flows onto black holes. These flows lead to strong heating and even to the formation of shocks close to the centrifugal barrier. Large asymmetries are due to the development of the KH instability triggered by the small turbulences at the layer separating the incoming flow from the out coming shocked flow. The consequence of this phenomenon is the production of asymmetric outflows of matter and quasi periodic oscillations of the inner disk regions up and down the Z=0 plane.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • Kang S. J.;Tanahashi M.;Miyauchi T.;Lee Y. H.
    • Journal of computational fluids engineering
    • /
    • v.6 no.4
    • /
    • pp.26-34
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Navier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to 25% of the cylinder diameter and in the case of the lock-in region it is 60%. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Direct Numerical Simulation of the Flow Past an Oscillating Circular Cylinder (진동하는 원주주위 유동의 직접수치해석)

  • KANG Shin-Jeong;TANAHASHI Mamoru;MIYAUCHI Toshio;NAM Cheong-Do;LEE Young-Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2001.05a
    • /
    • pp.181-188
    • /
    • 2001
  • The flow past a circular cylinder forced to vibrate transversely is numerically simulated by solving the two-dimensional Wavier-Stokes equations modified by the vibration velocity of a circular cylinder at a Reynolds number of 164. The higher-order finite difference scheme is employed for the spatial discretization along with the second order Adams-Bashforth and the first order backward-Euler time integration. The calculated cylinder vibration frequency is between 0.60 and 1.30 times of the natural vortex-shedding frequency. The calculated oscillation amplitude extends to $25\%$ of the cylinder diameter and in the case of the lock-in region it is $60\%$. It is made clear that the cylinder oscillation has influence on the wake pattern, the time histories of the drag and lift forces, power spectral density and phase diagrams, etc. It is found that these results include both the periodic (lock-in) and the quasi-periodic (non-lock-in) state. The vortex shedding frequency equals the driving frequency in the lock-in region but is independent in the non-lock-in region. The mean drag and the maximum lift coefficient increase with the increase of the forcing amplitude in the lock-in state. The lock-in boundaries are also established from the present direct numerical simulation.

  • PDF

Numerical Study of Periodic Turbulent Flow for a Pipe with an Orifice Ring (오리피스 링이 부착된 원관내 주기적인 난류운동에 대한 수치해석)

  • 맹주성;양시영;서현철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.9
    • /
    • pp.2294-2303
    • /
    • 1993
  • This paper investigated the characteristics of the turbulent incompressible flow past the orifice ring in an axi-symmetric pipe. The flow field was the turbulent pulsatile flow for Reynolds number of $2{\times}10^{5}$ which was defined based on the maximum velocity and the pipe diameter at the inlet, with oscillating frequence $(f_{os})=1/4{\pi}$ which was considered as quasi-steady state frequence. In the present investigation, finite analytic method was used to solve the governing equations in Navier Stokes and turbulent transport formulations. Particularly at high Reynolds number and low oscillation frequency, the effects of orifice ring on the flow were numerically investigated. The separation zone behind the orifice ring during the acceleration phase was found to be decreased. However, during the deceleration phase, the separation behind the orifice ring for pulsatile flow continuously grow to a size even larger than that in steady flow. The pressure drop in steady flow was found to be constant and always positive while for pulsatile flow the pressure drop change with time. And large turbulent kinetic energy, dissipation rate were found to be located in the region where the flow passes through the orifics ring. The maximum turbulent kinetic energy, generally occurs along the shear layer where the velocity gradient is large.