• Title/Summary/Keyword: Quasi-Newton

Search Result 76, Processing Time 0.019 seconds

Development of Dual Solver to Analyze the Flying State of ODD Head Slider (초고밀도 광디스크 시스템용 슬라이더 부상상태 해석을 위한 Dual Solver 개발)

  • 이상순;김광선
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.702-705
    • /
    • 2001
  • This paper deals with a method to predict the flying state of the head slider in a optical disk drive(ODD). The Dual Solver based on the Quasi-Newton method and the Newton method has been developed to simulate the steady-state flying conditions. The numerical results show the effectiveness and reliability of this new solver.

  • PDF

Convergence Rate of Newton-Raphson Method (뉴톤-랩슨 반복법의 점근비율)

  • 이관제
    • The Korean Journal of Applied Statistics
    • /
    • v.6 no.2
    • /
    • pp.319-328
    • /
    • 1993
  • The actual convergence rate of Newton-Raphson iteration method at each step is studied under the regularity conditions for the limiting distribution: The convergence rate of it is accelerated with good starting values. Hence we can decide a number of iterations according to our purposes.

  • PDF

Large-scale SQP Methods for Optimal Control of steady Incompressible Navier-Stokes Flows (Navier-Stokes 유체의 최적제어를 위한 SQP 기법의 개발)

  • Bark, Jai-Hyeong;Hong, Soon-Jo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.675-691
    • /
    • 2002
  • The focus of this work is on the development of large-scale numerical optimization methods for optimal control of steady incompressible Navier-Stokes flows. The control is affected by the suction or injection of fluid on portions of the boundary, and the objective function of fluid on portions of the boundary, and the objective function represents the rate at which energy is dissipated in the fluid. We develop reduced Hessian sequential quadratic programming. Both quasi-Newton and Newton variants are developed and compared to the approach of eliminating the flow equations and variables, which is effectively the generalized reduced gradient method. Optimal control problems we solved for two-dimensional flow around a cylinder. The examples demonstrate at least an order-of-magnitude reduction in time taken, allowing the optimal solution of flow control problems in as little as half an hour on a desktop workstation.

QUASI-LIKELIHOOD REGRESSION FOR VARYING COEFFICIENT MODELS WITH LONGITUDINAL DATA

  • Kim, Choong-Rak;Jeong, Mee-Seon;Kim, Woo-Chul;Park, Byeong-U.
    • Journal of the Korean Statistical Society
    • /
    • v.33 no.4
    • /
    • pp.367-379
    • /
    • 2004
  • This article deals with the nonparametric analysis of longitudinal data when there exist possible correlations among repeated measurements for a given subject. We consider a quasi-likelihood regression model where a transformation of the regression function through a link function is linear in time-varying coefficients. We investigate the local polynomial approach to estimate the time-varying coefficients, and derive the asymptotic distribution of the estimators in this quasi-likelihood context. A real data set is analyzed as an illustrative example.

A METHOD USING PARAMETRIC APPROACH WITH QUASINEWTON METHOD FOR CONSTRAINED OPTIMIZATION

  • Ryang, Yong-Joon;Kim, Won-Serk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.26 no.2
    • /
    • pp.127-134
    • /
    • 1989
  • This paper proposes a deformation method for solving practical nonlinear programming problems. Utilizing the nonlinear parametric programming technique with Quasi-Newton method [6,7], the method solves the problem by imbedding it into a suitable one-parameter family of problems. The approach discussed in this paper was originally developed with the aim of solving a system of structural optimization problems with frequently appears in various kind of engineering design. It is assumed that we have to solve more than one structural problem of the same type. It an optimal solution of one of these problems is available, then the optimal solutions of thel other problems can be easily obtained by using this known problem and its optimal solution as the initial problem of our parametric method. The method of nonlinear programming does not generally converge to the optimal solution from an arbitrary starting point if the initial estimate is not sufficiently close to the solution. On the other hand, the deformation method described in this paper is advantageous in that it is likely to obtain the optimal solution every if the initial point is not necessarily in a small neighborhood of the solution. the Jacobian matrix of the iteration formula has the special structural features [2, 3]. Sectioon 2 describes nonlinear parametric programming problem imbeded into a one-parameter family of problems. In Section 3 the iteration formulas for one-parameter are developed. Section 4 discusses parametric approach for Quasi-Newton method and gives algorithm for finding the optimal solution.

  • PDF

A Study on the Non-linear Forced Torsional Vibration for Propulsion Shaftings with Multi-Degree-of-Freedom System (기관축계의 비선형 다자유도 강제 비틀림진동에 관한 연구)

  • 김수철;이문식;장민오;김의간
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.6
    • /
    • pp.7-14
    • /
    • 2000
  • Nowadays, the viscous damper using high viscosity oil was much to be used for engine shafting system to reduce the excessive additional stress by torsional vibration. In general, it was assumed that the viscous damper could be modelled having only damping coefficient, that is to say, whose stiffness be ignored. But it is found that there exists a jump phenomenon, as a kind of non-linear vibration, in the actual engine shafting system with a damper of high viscosity. Therefore the damper ring and the casing are modelled as two mass elastic system with a complex viscosity. Also, to analyze a non-linear phenomenon, it is assumed that the viscous damper has a linear stiffness coefficient in proportion to the angular amplitude and a non-linear stiffness coefficient in proportion to cube of the angular amplitude. For the analysis, Quasi-Newton method with BFGS(Broyden-Fletcher-Goldfarb-Shanno) formula is used. Both calculated and measured values are provided in this paper which confirm the possibility of applying non-linear theory to engine shafting system with viscous damper.

  • PDF

Iterative parameter estimation for nonlinear measurements (비선형 측정에 대한 반복 계수측정 기법)

  • Chung, Tae-Ho;Je, Chang-Hae;Lyou, Joon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.314-317
    • /
    • 1993
  • In this paper, the IPE(Iterative Parameter Estimation) methods for the nonlinear measurements are proposed. The IPE methods convert the problems of the parameter estimation for the nonlinear measurements to that of the solution of the nonlinear equations approximately and use several iterative numerical solutions, such as fixed points theory, Newton's methods, quasi-Newton's methods and steepest descent techniques. the IPE methods for the nonlinear measurements-in the case of the error estimation for the inertial navigation systems are simulated, and it is found that the estimation errors for the nonlinear measurements decrease rapidly and converge to almost that of the linear LSE(Least Squares Estimation) when the IPE methods are applied.

  • PDF

Improved Excitation Coding for 13 kbps Variable Rate QCELP Coder

  • Kang, Sangwon;Lee, Dong-Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.3E
    • /
    • pp.3-6
    • /
    • 1997
  • This paper reports on the optimal design of the excitation codebook in the 13 kbps variable rate QCELP coder of Korean speech. We present two optimal excitation codebooks which consist of 128 and 556 samples, respectively. For the design and test of the improved codebook, a data base of Korean speech is used. A quasi-Newton optimization algorithm was developed to design the codebook. The optimized codebook which remains sparse, can produce an average gain of 0.84 and 0.45 dB in SNR and SEGSNR respectively. Informal listening tests confirm the improvement in speech quality.

  • PDF

Estimating Methods on Exponential Regression Models with Censored Data

  • Ha, Il-Do;Lee, Youngjo;Song, Jae-Kee
    • Journal of the Korean Statistical Society
    • /
    • v.28 no.2
    • /
    • pp.195-210
    • /
    • 1999
  • We consider a large class of exponential regression models with censored data and propose two modified Fisher scoring methods with corresponding algorithms. These proposed methods improve the Newton-Raphson method in estimating the model parameters. The simulated and real examples are illustrated in aspect of convergence.

  • PDF

DYNAMIC ANALYSIS AND DESIGN CALCULATION METHODS FOR POWERTRAIN MOUNTING SYSTEMS

  • Shangguan, W.B.;Zhao, Y.
    • International Journal of Automotive Technology
    • /
    • v.8 no.6
    • /
    • pp.731-744
    • /
    • 2007
  • A method for dynamic analysis and design calculation of a Powertrain Mounting System(PMS) including Hydraulic Engine Mounts(HEM) is developed with the aim of controlling powertrain motion and reducing low-frequency vibration in pitch and bounce modes. Here the pitch mode of the powertrain is defined as the mode rotating around the crankshaft of an engine for a transversely mounted powertrain. The powertrain is modeled as a rigid body connected to rigid ground by rubber mounts and/or HEMs. A mount is simplified as a three-dimensional spring with damping elements in its Local Coordinate System(LCS). The relation between force and displacement of each mount in its LCS is usually nonlinear and is simplified as piecewise linear in five ranges in this paper. An equation for estimating displacements of the powertrain center of gravity(C.G.) under static or quasi-static load is developed using Newton's second law, and an iterative algorithm is presented to calculate the displacements. Also an equation for analyzing the dynamic response of the powertrain under ground and engine shake excitations is derived using Newton's second law. Formulae for calculating reaction forces and displacements at each mount are presented. A generic PMS with four rubber mounts or two rubber mounts and two HEMs are used to validate the dynamic analysis and design calculation methods. Calculated displacements of the powertrain C.G. under static or quasi-static loads show that a powertrain motion can meet the displacement limits by properly selecting the stiffness and coordinates of the tuning points of each mount in its LCS using the calculation methods developed in this paper. Simulation results of the dynamic responses of a powertrain C.G. and the reaction forces at mounts demonstrate that resonance peaks can be reduced effectively with HEMs designed on the basis of the proposed methods.