• Title/Summary/Keyword: Quasi-3D FEM analysis

Search Result 10, Processing Time 0.032 seconds

The Improved Quasi-3D FE Analysis on the AFPM Motor (개선된 Quasi-3D FEM을 통한 AFPM 전동기의 해석)

  • Woo, Dong-Kyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.5
    • /
    • pp.773-776
    • /
    • 2016
  • In the quasi-3D finite element(FE) anlysis, the overall characteristics of axial flux permanent magnet(AFPM) motor could be composed of each computation region. However, A drawback of quasi-3D FEM is not to consider the end effect on the stack end. To address this problem, an improved quasi-3D FE analysis which considers the end effect of the AFPM motor was proposed. From results the 3D FE analysis, the validity of the proposed method is verified.

Effective Boundary Conditions for FEM Analysis of Composite Laminates (복합재료 적층판의 유한요소 해석을 위한 효율적 경계조건)

  • 김택현
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.92-98
    • /
    • 1998
  • This paper presents three boundary techniques which are useful for FEM analysis of composite laminates: 1) a rotational symmetric boundary technique . 2) a quasi three-dimensional boundary technique and 3) a contact boundary technique. The use of the rotational symmetric boundary technique is possible for a smaller FEM model. With the use of the quasi three-dimensional boundary tecnique. quasi three dimensional analysis of composite laminates can be performed on the conventional 3-D FEM program These techniques can readily be adopted to FEM programs.

  • PDF

Seismic Analysis of Tunnel Structures (터널구조물의 내진해석)

  • Lee, In-Mo;An, Dae-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.3 no.4
    • /
    • pp.3-15
    • /
    • 2001
  • Generally, it has been noted that underground structures have a consistent record of suffering much less damage than surface facilities during earthquakes; but it is still necessary to illustrate the dynamic response of tunnel structures subject to earthquake loadings and to provide the appropriate method for the seismic analysis of underground tunnel structures since many types of underground structures have been and will be constructed in countries situated within seismic zones. In this study, first, seismic analyses for underground tunnel structures are performed by using quasistatic analysis method and dynamic analysis method. Second, seismic analyses in tunnel portals are performed by using above methods. The results of seismic analyses for the tunnel structure show that the tunnel structure conforms to ground deformation and that seismic design by using the quasi-static analysis method is more conservative than that by using the dynamic analysis. The results of the dynamic FEM analysis for the tunnel structure show that the simplified 2-D FEM analysis using a sine wave rather than the 3-D FEM analysis can be adopted for seismic analysis. Finally, the results of the dynamic FEM analysis in tunnel portals show that the force acting on the lining is largest near to the tunnel portal when an earthquake wave propagates parallel to tunnel axis.

  • PDF

Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement (사면보강 뿌리말뚝공법의 준3차원적 안정해석기법)

  • Kim, Hong-Taek;Gang, In-Gyu;Park, Sa-Won
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

A Study on 3D Smoothed Finite Element Method for the Analysis of Nonlinear Nearly-incompressible Materials (비선형 비압축성 물질의 해석을 위한 3차원 Smoothed FEM)

  • Lee, Changkye;Yee, Jurng-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.159-169
    • /
    • 2019
  • This work presents the three-dimensional extended strain smoothing approach in the framework of finite element method, so-called smoothed finite element method (S-FEM) for quasi-incompressible hyperelastic materials undergoing the large deformations. The proposed method is known that the incompressible limits, such as over-estimation of stiffness and distorted mesh sensitivity, can be overcome in two dimensions. Therefore, in this paper, the idea of Cell-based, Edge-based and Node-based strain smoothing approaches is extended to three-dimensions. The construction of subcells and smoothing domains for each methods are explained. The smoothed strain-displacement matrix and the stiffness matrix are obtained on each smoothing domain in the same manner with two-dimensional S-FEM. Various numerical tests are studied to demonstrate the validity and accuracy of 3D-S-FEM. The obtained results are compared with analytical solutions to express the efficacy of the methods.

A Study on Axial Collapse Characteristics of Spot Welded Double-Hat Shaped Section Members by FEM (FEM에 의한 점용접된 이중모자형 단면부재의 축방향 압궤특성에 관한 연구)

  • Cha, Cheon-Seok;Kim, Young-Nam;Yang, In-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.120-126
    • /
    • 2001
  • The widely used spot welded section members of vehicles are structures which absorb most of the energy in a front-end collision. In front-end collision, sufficiently absorbed in the front parts, the impact energy does not reach the passengers. Simultaneously, the frame gets less damaged. This structures have to be very stiff, but collapse progressively to absorb the kinetic energy as expected. In the view of stiffness, the double-hat shaped section member is stiffer than the hat shaped section member. In progress of collapse, the hat shaped section member is collapsing progressively, but the double-hat shaped section member does not due to stiffness. An analysis on the hat shaped section member was previously completed. This paper concerns the collapse characteristic of the double-hat shaped section member. In the program system presented in this study, an explicit finite element code, LS-DYNA3D is adopted for simulating complicate collapse behavior of double hat shaped section members with respect to spot weld pitches. And comparing with the results from the quasi-static and impact experiment, the simulation has been verified.

  • PDF

Impact Behavior of Laminated Composite using Progressive Failure Model (단계적 파괴 모델에 의한 적층 복합재료의 충격거동 해석)

  • 강문수;이경우;강태진
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.11a
    • /
    • pp.102-105
    • /
    • 2000
  • Recently, applications of integrated large composite structures have been attempted to many structures of vehicles. To improve the cost performance and reliability of the integrated composite structures, it is necessary to judge structural integrity of the composite structures. For the judgement, we need fracture simulation techniques for composite structures. Many researches oil the fracture simulation method using FEM have been reported by now. Most of the researches carried out simulations considering only matrix cracking and fiber breaking as fracture modes, and did not consider delamination. Several papers have reported the delamination simulation, but all these reports require three-dimensional elements or quasi three- dimensional elements for FEM analysis. Among fracture mechanisms of composite laminates, delamination is the most important factor because it causes stiffness degradation in composite structures. It is known that onset and propagation of delamination are dominated by the strain energy release rate and interfacial moment. In this study, laminated composite has been described by using 3 dimensional finite elements. Then impact behavior of the laminated composite is simulated using FEM(ABAQUS/Explicit) with progressive failure mechanism. These results are compared with experimental results.

  • PDF

Quality Improvement for Crimping Process of Electrical Connector Using FEM Analysis (유한요소해석을 통한 전기 커넥터의 압착 품질 향상)

  • Yin, Z.H.;Park, J.G.;Choi, H.S.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.18 no.3
    • /
    • pp.229-235
    • /
    • 2009
  • This paper covers finite element simulations to evaluate the terminal crimping process of automobile electrical connector. Crimping is a classical technology process to ensure the electrical and the mechanical link between a wire and a terminal. Numerical modeling of the process is helpful to choose and to optimize the dimensions of the crimping part of the connector. In this paper, we discuss a 2D simulation of the crimping process, using explicit finite element methods (ABAQUS/Explicit) and we compare the results with experimental data from the industrial process of crimping (crimping height, crimping width and compressibility). The explicit method is preferred for the modeling of multi-contact problems, in spite of the quasi-static process of crimping. As compared with CAE analysis, a performance improvement makes certain of the truth of the matter.

Quasi-Three Dimensional Stability Analysis of the Geosynthetic-Reinforced Soil Retaining Wall System (GRS-RW 보강토벽체 공법의 준3차원 안정해석)

  • 김홍택;박준용
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.177-204
    • /
    • 1998
  • In the present study, a method of quasi-three dimensional stability analysis is proposed for a systematic design of the GRS-RW(Geosynthetic-Reinforced Soil Retaining Wall) system based on the postulated three dimensional failure wedge. The proposed method could be applied to the analysis of the stability of both the straight-line and cove-shaped are. As with skew reinforcements. Maximum earth thrust expected to act on the rigid face wall is assumed to distribute along the depth, and wall displacements are predicted based on both the assumed compaction-induced earth pressures and one dimensional finite element method of analysis. For a verification of the procedure proposed in the present study, the predicted wall displacements are compared with chose obtained from the RMC tests in Canada and the FHWA tests in U.S.A. In these comparisons the wall displacements estimated by the methods of Christopher et at. and Chew & Mitchell are also included for further verification. Also, the predicted wall displacements for the convex-shaped zone reinforced with skew reinforcements are compared with those by $FLAC_{3D}$ program analyses. The assumed compaction-induced earth pressures evaluated on the basic of the proposed method of analysis are further compared with the measurements by the FHWA best wall. A parametric stduy is finally performed to investigate the effects of various design parameters for the stability of the GRS-RW system

  • PDF

Failure analysis of laminates by implementation of continuum damage mechanics in layer-wise finite element theory

  • Mohammadi, B.;Hosseini-Toudeshky, H.;Sadr-Lahidjani, M.H.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.6
    • /
    • pp.657-674
    • /
    • 2009
  • In this paper a 3-D continuum damage mechanics formulation for composite laminates and its implementation into a finite element model that is based on the layer-wise laminate plate theory are described. In the damage formulation, each composite ply is treated as a homogeneous orthotropic material exhibiting orthotropic damage in the form of distributed microscopic cracks that are normal to the three principal material directions. The progressive damage of different angle ply composite laminates under quasi-static loading that exhibit the free edge effects are investigated. The effects of various numerical modeling parameters on the progressive damage response are investigated. It will be shown that the dominant damage mechanism in the lay-ups of [+30/-30]s and [+45/-45]s is matrix cracking. However, the lay-up of [+15/-15] may be delaminated in the vicinity of the edges and at $+{\theta}/-{\theta}$ layers interfaces.