• Title/Summary/Keyword: Quasi Yamabe soliton

Search Result 4, Processing Time 0.022 seconds

3-Dimensional Trans-Sasakian Manifolds with Gradient Generalized Quasi-Yamabe and Quasi-Yamabe Metrics

  • Siddiqi, Mohammed Danish;Chaubey, Sudhakar Kumar;Ramandi, Ghodratallah Fasihi
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.3
    • /
    • pp.645-660
    • /
    • 2021
  • This paper examines the behavior of a 3-dimensional trans-Sasakian manifold equipped with a gradient generalized quasi-Yamabe soliton. In particular, It is shown that α-Sasakian, β-Kenmotsu and cosymplectic manifolds satisfy the gradient generalized quasi-Yamabe soliton equation. Furthermore, in the particular case when the potential vector field ζ of the quasi-Yamabe soliton is of gradient type ζ = grad(ψ), we derive a Poisson's equation from the quasi-Yamabe soliton equation. Also, we study harmonic aspects of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds sharing a harmonic potential function ψ. Finally, we observe that 3-dimensional compact trans-Sasakian manifold admits the gradient generalized almost quasi-Yamabe soliton with Hodge-de Rham potential ψ. This research ends with few examples of quasi-Yamabe solitons on 3-dimensional trans-Sasakian manifolds.

ALMOST QUASI-YAMABE SOLITONS ON LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS-[(LCS)n]

  • Jun, Jae-Bok;Siddiqi, Mohd. Danish
    • Honam Mathematical Journal
    • /
    • v.42 no.3
    • /
    • pp.521-536
    • /
    • 2020
  • The object of the present paper is to study of Almost Quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons on an Lorentzian concircular structure manifolds briefly say (LCS)n-manifolds under infinitesimal CL-transformations and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Also we obtained a necessary and sufficient condition of an almost quasi-Yamabe soliton with respect to the CL-connection to be an almost quasi-Yamabe soliton on (LCS)n-manifolds with respect to Levi-Civita connection. Finally, we construct an example of steady almost quasi-Yamabe soliton on 3-dimensional (LCS)n-manifolds.

Almost Kenmotsu Metrics with Quasi Yamabe Soliton

  • Pradip Majhi;Dibakar Dey
    • Kyungpook Mathematical Journal
    • /
    • v.63 no.1
    • /
    • pp.97-104
    • /
    • 2023
  • In the present paper, we characterize, for a class of almost Kenmotsu manifolds, those that admit quasi Yamabe solitons. We show that if a (k, 𝜇)'-almost Kenmotsu manifold admits a quasi Yamabe soliton (g, V, 𝜆, 𝛼) where V is pointwise collinear with 𝜉, then (1) V is a constant multiple of 𝜉, (2) V is a strict infinitesimal contact transformation, and (3) (£Vh')X = 0 holds for any vector field X. We present an illustrative example to support the result.

CERTAIN SOLITONS ON GENERALIZED (𝜅, 𝜇) CONTACT METRIC MANIFOLDS

  • Sarkar, Avijit;Bhakta, Pradip
    • Korean Journal of Mathematics
    • /
    • v.28 no.4
    • /
    • pp.847-863
    • /
    • 2020
  • The aim of the present paper is to study some solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. We study gradient Yamabe solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds. It is proved that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is gradient Einstein soliton then ${\mu}={\frac{2{\kappa}}{{\kappa}-2}}$. It is shown that if the metric of a three dimensional generalized (𝜅, 𝜇)-contact metric manifold is closed m-quasi Einstein metric then ${\kappa}={\frac{\lambda}{m+2}}$ and 𝜇 = 0. We also study conformal gradient Ricci solitons on three dimensional generalized (𝜅, 𝜇)-contact metric manifolds.