DOI QR코드

DOI QR Code

ALMOST QUASI-YAMABE SOLITONS ON LORENTZIAN CONCIRCULAR STRUCTURE MANIFOLDS-[(LCS)n]

  • Jun, Jae-Bok (Department of Mathematics College of Natural Science Kookmin University) ;
  • Siddiqi, Mohd. Danish (Department of Mathematics Faculty of science, Jazan University)
  • Received : 2019.11.28
  • Accepted : 2020.06.09
  • Published : 2020.09.25

Abstract

The object of the present paper is to study of Almost Quasi-Yamabe solitons and gradient almost quasi-Yamabe solitons on an Lorentzian concircular structure manifolds briefly say (LCS)n-manifolds under infinitesimal CL-transformations and obtained sufficient conditions for such solitons to be expanding, steady and shrinking. Also we obtained a necessary and sufficient condition of an almost quasi-Yamabe soliton with respect to the CL-connection to be an almost quasi-Yamabe soliton on (LCS)n-manifolds with respect to Levi-Civita connection. Finally, we construct an example of steady almost quasi-Yamabe soliton on 3-dimensional (LCS)n-manifolds.

Keywords

References

  1. Ahmad, H and Shaikh, A. A., Some transformations on (LCS)n-manifolds, Tsukuba J. Math., 38(1), (2014), 1-24. https://doi.org/10.21099/tkbjm/1407938669
  2. Blaga. A. M., A note on Warped product almost quasi-Yamabe solitons, arXiv. 1809.05393v2 [math. DG] 17 Apr. 2018.
  3. Chen, B. Y, and Desahmukh, S., Yamabe and quasi-Yamabe soliton on Euclidean submanifolds, Mediterranean Journal of Mathematics August 2018, DOI: 10.1007/s00009-018-1237-2.
  4. Erken, K., Yamabe solitons on three-dimensional normal almost para-contact metric manifolds, arXiv. 1709.04882V2v2 [math. DG] 2017.
  5. Hui, S. K. and Chakraborty, D., Infinitesimal CL-transformations on Kenmotsu manifolds, Bangmod Int. J. Math. and Comp. Sci. 3 (2017), 1-9.
  6. Huang, G., Li, H. On a classification of the quasi-Yamabe gradient solitons, Methods Appl. Anal. 21(3), (2014), 379-389. https://doi.org/10.4310/MAA.2014.v21.n3.a7
  7. Hamilton, R. S., The Ricci flow on surfaces, Mathematics and general relativity, Contemp. Math. Amer. Math. Soc., 71, (1988), 237-262. https://doi.org/10.1090/conm/071/954419
  8. Koto, S and Nagao, M., On an invariant tensor under a CL-transformation, Kodai Math. Sem. Rep. 18 (1966), 87-95 https://doi.org/10.2996/kmj/1138845189
  9. Leandro, B., Pina, H., Generalized quasi-Yamabe gradient solitons, Differential Geom. Appl. 49, (2016), 167-175 https://doi.org/10.1016/j.difgeo.2016.07.008
  10. Mihai, I. and Rosca, R., On Lorentzian P-Sasakain manifolds, Clasical Analysis, World Sci., Singapore, 1992, 155-169.
  11. Matsumoto, K., On Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci., 12 (1989), 151-156.
  12. Mantica, C. A. and Molinari, L. G., A notes on concircular structure spacetimes, Commun. Korean Math. Soc. 34 (2019), No. 2, pp. 633-635. https://doi.org/10.4134/CKMS.c180138
  13. Mandal, Y. C. and Hui, S. K., On the exitence of Yamabe gradient soliton, Int. J. Math. Engin. Mang. Sci, 3(4), (2018), 491-497.
  14. O'Neill, B., Semi Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983. (1972), 93-103.
  15. Shaikh, A. A., Some results on (LCS)n-manifolds, J. Korean Math. Soc. 46 (2009), no. 3, 449-461. https://doi.org/10.4134/JKMS.2009.46.3.449
  16. Shaikh, A. A and Baishya, K. K., On concircular structure spacetimes, J. Math. Stat. 1 (2005), no. 2, 129-132. https://doi.org/10.3844/jmssp.2005.129.132
  17. Shaikh, A. A. and Baishya, K. K., On concircular structure spacetimes, J. Math. Stat., (1) (2005), 129-132. https://doi.org/10.3844/jmssp.2012.129.135
  18. Shaikh, A. A., Matsuyama, Y and Hui, S. K., On invariant submanifold of (LCS)n-manifolds, J. of the Egyptian Math. Soc., 24 (2016), 263-269. https://doi.org/10.1016/j.joems.2015.05.008
  19. Takamatsu, K and Mizusawa, H., On infinitesimal CL-transformations of compact normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A No. 3 (1966), 31-39.
  20. Tashiro, Y and Tachibana, S., On Fubinian and C-Fubinian manifolds, Kodai Math. Sem. Rep. 15 (1963), 176-183. https://doi.org/10.2996/kmj/1138844787
  21. Yildiz, A., Turan, M. and Murathan, C., A class of Lorentzian-Sasakian manifolds, Kyungpook Math. J. 49(2009), 789-799. https://doi.org/10.5666/KMJ.2009.49.4.789
  22. Yano, K., Concircular geometry I. Concircular transformations, Proc. Imp. Acad. Tokyo 16 (1940), 195-200. https://doi.org/10.3792/pia/1195579139