• Title/Summary/Keyword: Quartz Heater

Search Result 12, Processing Time 0.03 seconds

A Study on the Temperature and Electrical Characteristics of Carbon Heater (카본 발열체의 온도 및 전기적 특성에 관한 연구)

  • Jin, Z.H.;Shim, K.J.;Kong, T.W.;Jeong, H.M.;Chung, H.S.
    • Journal of Power System Engineering
    • /
    • v.10 no.1
    • /
    • pp.71-76
    • /
    • 2006
  • This paper aims to study several type heaters which are mica heater, film heater, quartz heater and rod heater and to get an temteraturel and electrical characteristics. These four type heaters have a merit in many fields than present electric heater with nichrome wire. Carbon and mica plate heater have higher heat efficiency and less electromagnetic waves. Also it has been reported that far infrared ray emission from this heater is good for our health. Additionally heating element is thin and lighter plate. For these reasons, they will be widely used to various application such as room-heating or manufacturing goods. Experimental result confirmed that when 220V current authorized, the temperature, electric current, electric power and the resistance rise to stationary state in early stage. Moreover, the temperatures and electric characteristics show a good stability.

  • PDF

Experimental Study on a Micro Flow Sensor (미소 유량 센서에 관한 실험적 연구)

  • Kim, Tae-Hoon;Kim, Sung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1783-1788
    • /
    • 2004
  • In the present paper, a micro flow sensor, which can be used at bio-delivery systems and micro heat pumps, is developed. For this, the micro flow sensor is integrated on a quartz wafer ($SiO_2$) and is manufactured by simple and convenient microfabrication processes. The micro flow sensor aims for measuring mass flow rates in the low range of about $0{\sim}20$ SCCM. The micro flow sensor is composed of temperature sensors, a heater, and a flow microchannel. The temperature sensors and the heater are manufactured by the sputtering processes in this study. In the microfabrication processes, stainless steel masks with different patterns are used to deposit alumel and chromel for temperature sensors and nichrome for the heater on the quartz wafer. The microchannel is made of Polydimethylsiloxane(PDMS) easily. A deposited quartz wafer is bonded to the PDMS microchannel by using the air plasma. Finally, we confirmed the good operation of the present micro flow sensor by measuring flow rate.

  • PDF

Influence of relative distance between heater and quartz crucible on temperature profile of hot-zone in Czochralski silicon crystal growth (쵸크랄스키법 실리콘 성장로에서 핫존 온도분포 경향에 대한 히터와 석영도가니의 상대적 위치의 영향)

  • Kim, Kwanghun;Kwon, Sejin;Kim, Ilhwan;Park, Junseong;Shim, Taehun;Park, Jeagun
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.5
    • /
    • pp.179-184
    • /
    • 2018
  • To lessen oxygen concentrations in a wafer through modifying the length of graphite heaters, we investigated the influence of relative distance from heater to quartz crucible on temperature profile of hot-zone in Czochralski silicon-crystal growth by simulation. In particular, ATC temperature and power profiles as a function of different ingot body positions were investigated for five different heater designs; (a) typical side heater (SH), (b) short side heater-up (SSH-up), (c) short side heater-low (SSH-low), (d) bottom heater without side heater (Only-BH), and (e) side heater with bottom heater (SH + BH). It was confirmed that lower short side heater exhibited the highest ATC temperature, which was attributed to the longest distance from triple point to heater center. In addition, for the viewpoint of energy efficiency, it was observed that the typical side heater showed the lowest power because it heated more area of quartz crucible than that of others. This result provides the possibility to predict the feed-forward delta temperature profile as a function of various heater designs.

Investigation of the Heterogeneous Decomposition of Ammonia in an Inverted, Stagnation-point Flow Reactor (전도된 정체점 흐름을 갖는 반응기에서 암모니아의 비균질 분해 반응 연구)

  • Hwang, Jang Y.;Anderson, Tim
    • Korean Chemical Engineering Research
    • /
    • v.47 no.3
    • /
    • pp.287-291
    • /
    • 2009
  • The heterogeneous decomposition of ammonia on a quartz surface in an inverted, stagnation-point flow reactor was investigated using a measurement reactor and a numerical model of the reactor. In the experiments, 8 mole% of ammonia in nitrogen was used and the temperature of an electric heater was set in the range $300{\sim}900^{\circ}C$ to heat the quartz surface where the decomposition took place. Gas temperatures and ammonia concentrations in the reactor obtained using in situ Raman spectroscopy were analyzed with the numerical model and it was revealed that, depending on the heater temperature, the temperature of the quartz surface was estimated to be in the range $235{\sim}619^{\circ}C$ and the activation energy of the decomposition on the surface was in the range 10.9~15.8 kcal/mol.

A Study on the Exothermic Properties of ITO/Ag/ITO Multilayer Transparent Electrode Depending on Metal Layer Thickness (금속층 두께에 따른 ITO/Ag/ITO 다층 투명 전극의 발열 특성 연구)

  • Min, Hye-Jin;Kang, Ye-Jina;Son, Hye-Won;Sin, So-Hyun;Hwang, Min-Ho;Lee, Hyun-Yong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2022
  • In this study, we investigated the optical, electrical and exothermic characteristics of ITO/Ag/ITO multilayer structures prepared with various Ag thicknesses on quartz and PI substrates. The transparent conducting properties of the ITO/Ag/ITO multilayer films depended on the thickness of the mid-layer metal film. The ITO/Ag (14 nm)/ITO showed the highest Haccke's figure of merit (FOM) of approximately 19.3×10-3 Ω-1. In addition, the exothermic property depended on the substrate. For an applied voltage of 3.7 V, the ITO/Ag (14 nm)/ITO multilayers on quartz and PI substrates were heated up to 110℃ and 200℃, respectively. The bending tests demonstrated a comparable flexibility of the ITO/Ag/IT multilayer to other transparent electrodes, indicating the potential of ITO/Ag/ITO multilayer as a flexible transparent conducting heater.

Wall Heat Flux Behavior of Nucleate Pool Boiling Under a Constant Temperature Condition in a Binary Mixture System (일정 벽면 온도 조건에서 이성분 혼합물의 핵비등시 벽면 열유속 거동)

  • Bae, Sung-Won;Lee, Han-Choon;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.9
    • /
    • pp.1239-1246
    • /
    • 2000
  • The objective of this work is to measure space and time resolved wall heat fluxes during nucleate pool boiling of R113/R11 mixtures using a microscale heater array in conjunction with a high speed CCD. The microscale heater array is constructed using VLSI techniques, and consists of 96 serpentine platinum resistance heaters on a transparent quartz substrate. Electronic feedback circuits are used to keep the temperature of each heater at a specified temperature and the variation in heating power required to keep the temperature constant is measured. Heat flux data around an isolated bubble are obtained with triggered CCD images. CCD images are obtained at a rate of 1000frames/second. The heat transfer variation vs. time on the heaters directly around the nucleation site is plotted and correlated with images of the bubble obtainedby using the high speed CCD. For both of the mixture(R11/R113) and pure system(pure R11, pure R113), the wall heat fluxes are presented and compared to find out the qualitative difference between pure and binary mixture nucleate boiling.

Development and Performance Testing of a Time-resolved OSL Measurement System

  • Hong, Duk-Geun;Kim, Myung-Jin
    • Journal of Radiation Protection and Research
    • /
    • v.42 no.1
    • /
    • pp.69-76
    • /
    • 2017
  • Background: Time-resolved optically stimulated luminescence (TR-OSL) is a very useful method for calculating the lifetimes of crystalline quartz and feldspar. Materials and Methods: A compact TR-OSL system was developed, comprising a heater assembly manufactured using Kanthal wire, 2 powerful blue light-emitting diodes (LED, LXHL-PB02) for optical stimulation equipped with VIS liquid light guides, and a photomultiplier tube combined with an optical filter for luminescence detection. A pulse generated from the data acquisition board (NI PCI 6250) was used to initiate on/off signals in LED and TR-OSL measurements. Results and Discussion: The TR-OSL and background signals measured using this TR-OSL system using quartz samples were very similar to those reported in a previous study. Additionally, the lifetimes of the build-up and TR-OSL signals were calculated as $27.4{\pm}2.2{\mu}s$ and $30.3{\pm}0.6{\mu}s$, respectively, in good agreement with the findings of a previous study. Conclusion: It was concluded that the developed TR-OSL system was very reliable for TR-OSL signal measurements and lifetime calculations.

Study on Fire Hazard Analysis along with Heater Use in the Public Use Facility Traditional Market in Winter (겨울철 다중이용시설인 전통재래시장 난방기구 사용에 따른 화재 위험성 분석에 관한 연구)

  • Ko, Jaesun
    • Journal of the Society of Disaster Information
    • /
    • v.10 no.4
    • /
    • pp.583-597
    • /
    • 2014
  • Fire caused by heater has various causes as many as the types of heater. also, lots of damage of human life and property loss are caused, since annually continuous fire accident by heater in traditional market is frequently occurring. There are not many cases of fire due to heater in most of residential facilities such as general house, apartments, etc., because they are supplied with heating boiler, however the restaurant, store and office of the market, sports center, factory, workplace, etc. still use heater, e.g. oilstove, electric heater, etc., so that they are exposed to fire hazard. Also, when investigating the number of fire due to heater, it was analyzed to occur in order of home boiler, charcoal stove, oilstove, gas heater/stove, electric stove/heater, the number of fire per human life damage was analyzed in order of gas heater/stove, oil heater/stove, electric heater/stove, briquette/coal heater. Also, gas and oil related heater were analyzed to have low frequency, however, with high fire intensity. Therefore, this research aimed at considering more scientific fire inspection and identification approach by reenacting and reviewing fire outbreak possibility caused by combustibles' contact and conductivity under the normal condition and abnormal condition in respect of ignition hazard, i.e. minimum ignition temperature, carbonization degree and heat flux along with it, due to oilstove and electric stove, which are still frequently used in public use facility, traditional market, and, of which actual fire occurrence is the most frequent. As the result of reenact test, ignition hazard appeared very small, as long as enough heat storage condition is not made in both test objects(oilstove/electric stove), however carbonization condition was analyzed to be proceeded per each part respectively. Eventually, transition to fire is the ignition due to heat storage, so that it was analyzed to ignite when minimum heat storage temperature condition of fire place is over $500^{\circ}C$. Particularly, in case of quartz pipe, the heating element of electric stove, it is rapidly heated over the temperature of $600^{\circ}C$ within the shortest time(10sec), so that the heat flux of this appears 6.26kW/m2, which was analyzed to result in damage of thermal PVC cable and second-degree burn in human body. Also, the researcher recognized that the temperature change along with Geometric View Factor and Fire Load, which display decrease of heat, are also important variables to be considered, along with distance change besides temperature condition. Therefore, the researcher considers that a manual of careful fire inspection and identification on this is necessary, also, expects that scientific and rational efforts of this research can contribute to establish manual composition and theoretical basis on henceforth fire inspection and identification.

Construction of CVD by using RF Helicon Plasma (RF 헬리콘 플라즈마를 이용한 회학기상 증착기의 제작)

  • 신재균;현준원;박상규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.8
    • /
    • pp.607-612
    • /
    • 1998
  • RF HPCVD(Helicon Plasma Chemical Vapor Deposition) has been successfully constructed for diamond thin films. The system consists of plasma generation tube, deposition chamber, pumping lines for gas system. A mixture of $CH_4 and H_2$is used for reaction. Two thermocouples, a quartz tube surrounded by a RF antenna and a magnet, and a high temperature heater were set up in the deposition chamber. The process for the thin film diamond deposition has been carried put in a high vacuum system at a substrate temperature of $800^{\circ}C$, and pressure of 5 mtorr. It is also demonstrated. that the RF HPCVD system has advantages for controlling deposition parameters easily.

  • PDF

New Solid-phase Crystallization of Amorphous Silicon by Selective Area Heating

  • Kim, Do-Kyung;Jeong, Woong-Hee;Bae, Jung-Hyeon;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • v.10 no.3
    • /
    • pp.117-120
    • /
    • 2009
  • A new crystallization method for amorphous silicon, called selective area heating (SAH), was proposed. The purpose of SAH is to improve the reliability of amorphous silicon films with extremely low thermal budgets to the glass substrate. The crystallization time shortened from that of the conventional solid-phase crystallization method. An isolated thin heater for SAH was fabricated on a quartz substrate with a Pt layer. To investigate the crystalline properties, Raman scattering spectra were used. The crystalline transverse optic phonon peak was at about 519 $cm^{-1}$, which shows that the films were crystallized. The effect of the crystallization time on the varying thickness of the $SiO_2$ films was investigated. The crystallization area in the 400nm-thick $SiO_2$ film was larger than those of the $SiO_2$ films with other thicknesses after SAH at 16 W for 2 min. The results show that a $SiO_2$ capping layer acts as storage layer for thermal energy. SAH is thus suggested as a new crystallization method for large-area electronic device applications.