• Title/Summary/Keyword: Quarter-Car

Search Result 70, Processing Time 0.024 seconds

Performance Evaluation of a Semi-active Vehicle Suspension Using Piezostack Actuator Valve (압전작동기 밸브를 이용한 반능동 차량현가장치의 성능 고찰)

  • Han, Chulhee;Yoon, Gun-Ha;Park, Young-Dai;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.1
    • /
    • pp.82-88
    • /
    • 2016
  • This paper proposes a new type of semi-active direct-drive valve(DDV) car suspension system using piezoelectric actuator associated with displacement amplifier. As a first step, controllable piezoelectric DDV damper is designed and governing equation of a quarter-vehicle suspension system consisting of sprung mass, spring, tire and the piezostack DDV damper is constructed. After deriving the equations of the motion, in order to control spool displacement and damping force the skyhook controller is designed and applied. The performance evaluation of the proposed semi-active suspension system is conducted with different displacement of spool. Then, the ride comfort analysis is undertaken in time domain with bump road profile.

Self-Tuning Gain-Scheduled Skyhook Control for Semi-Active Suspension Systems: Implementation and Experiment (반능동 현가시스템용 자기동조 게인조절형 스카이훅 제어기의 구현 및 실험)

  • Hong, Kyung-Tae;Huh, Chang-Do;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.199-207
    • /
    • 2002
  • In this paper, a self-tuning gain-scheduled skyhook control for semi-active suspension systems is investigated. The dynamic characteristics of a continuously variable damper including electro-hydraulic pressure control valves is analyzed. A 2-d.o.f. time-varying quarter-car model that permits variations in sprung mass and suspension spring coefficient is considered. The self-tuning skyhook control algorithm proposed in this paper requires only the measurement of body acceleration. The absolute velocity of the sprung mass and the relative velocity of the suspension deflection are estimated by using integral filters. The skyhook gains are gain-scheduled in such a way that the body acceleration and the dynamic tire force are optimized. An ECU prototype is discussed. Experimental results using a 1/4-ear simulator are discussed. Also, a suspension ECU prototype targeting real implementation is provided.

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

Development of Real Time Multibody Vehicle Dynamics Software Part I : Real Time Vehicle Model based on Subsystem Synthesis Method (실시간 다물체 차량 동역학 소프트웨어 개발 Part Ⅰ: 부분시스템 합성방법에 의한 실시간 차량 모델)

  • Kim, Sung-Soo;Jeong, Wan-Hee;Lee, Chang-Ho;Jung, Do-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.162-168
    • /
    • 2009
  • The real-time multibody vehicle model based on the subsystem synthesis method has been developed. Suspension, anti roll bar, steering, and tire subsystem models have been developed for vehicle dynamics. The compliance effect from bush element has been considered using a quasi-static method to achieve the real time requirement. To validate the developed vehicle model, a quarter car and a full vehicle simulations have been carried out comparing simulation results with those from the ADAMS vehicle model. Real time capability has been also validated by measuring CPU time of the simulation results.

Inverse Model Control of An ER Damper System

  • Cho Jeong-Mok;Jung Taeg-Eun;Kim Dong-Hyeon;Joh Joong-Seon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.1
    • /
    • pp.64-69
    • /
    • 2006
  • Due to the inherent nonlinear nature of Electro-rheological (ER) fluid dampers, one of the challenging aspects for utilizing these devices to achieve high system performance is the development of accurate models and control algorithms that can take advantage of their unique characteristics. In this paper, the nonlinear damping force model is made to identify the properties of the ER damper using higher order spectrum. The higher order spectral analysis is used to investigate the nonlinear frequency coupling phenomena with the damping force signal according to the sinusoidal excitation of the damper. Also, this paper presents an inverse model of the ER damper, i.e., the model can predict the required voltage so that the ER damper can produce the desired force for the requirement of vibration control of vehicle suspension systems. The inverse model is constructed by using a multi-layer perceptron neural network. A quarter-car suspension model is considered in this paper for analysis and simulation. Simulation results show that the proposed inverse model of ER damper can obtain control voltage of ER damper for required damping force.

Hilbert transform based approach to improve extraction of "drive-by" bridge frequency

  • Tan, Chengjun;Uddin, Nasim
    • Smart Structures and Systems
    • /
    • v.25 no.3
    • /
    • pp.265-277
    • /
    • 2020
  • Recently, the concept of "drive-by" bridge monitoring system using indirect measurements from a passing vehicle to extract key parameters of a bridge has been rapidly developed. As one of the most key parameters of a bridge, the natural frequency has been successfully extracted theoretically and in practice using indirect measurements. The frequency of bridge is generally calculated applying Fast Fourier Transform (FFT) directly. However, it has been demonstrated that with the increase in vehicle velocity, the estimated frequency resolution of FFT will be very low causing a great extracted error. Moreover, because of the low frequency resolution, it is hard to detect the frequency drop caused by any damages or degradation of the bridge structural integrity. This paper will introduce a new technique of bridge frequency extraction based on Hilbert Transform (HT) that is not restricted to frequency resolution and can, therefore, improve identification accuracy. In this paper, deriving from the vehicle response, the closed-form solution associated with bridge frequency removing the effect of vehicle velocity is discussed in the analytical study. Then a numerical Vehicle-Bridge Interaction (VBI) model with a quarter car model is adopted to demonstrate the proposed approach. Finally, factors that affect the proposed approach are studied, including vehicle velocity, signal noise, and road roughness profile.

Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller

  • Muthalif, Asan G.A.;Kasemi, Hasanul B.;Nordin, N.H. Diyana;Rashid, M.M.;Razali, M. Khusyaie M.
    • Smart Structures and Systems
    • /
    • v.20 no.1
    • /
    • pp.85-97
    • /
    • 2017
  • The aim of this research is to develop a new method to use magnetorheological (MR) damper for vibration control. It is a new way to achieve the MR damper response without the need to have detailed constant parameters estimations. The methodology adopted in designing the control structure in this work is based on the experimental results. In order to investigate and understand the behaviour of an MR damper, an experiment is first conducted. Force-displacement and force-velocity responses with varying current have been established to model the MR damper. The force for upward and downward motions of the damper piston is found to be increasing with current and velocity. In cyclic motion, which is the combination of upward and downward motions of the piston, the force with hysteresis behaviour is seen to be increasing with current. In addition, the energy dissipated is also found to be linear with current. A proportional-integral-derivative (PID) controller, based on the established characteristics for a quarter car suspension model, has been adapted in this study. A fuzzy rule based PID controller (F-PID) is opted to achieve better response for a varying frequency input. The outcome of this study can be used in the modelling of MR damper and applied to control engineering. Moreover, the identified behaviour can help in further development of the MR damper technology.

Identification of System Frequency Variations in Vehicle-Bridge Interaction Systems (교량-차량 동적상호작용을 고려한 시간가변적 시스템 특성 분석)

  • Lee, Jaehun;Lee, Young Jae;Kim, Robin Eunju
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2022
  • Natural frequency variations in a vehicle-bridge interaction system is examined. The interaction system is designed for a simple beam subject to a moving vehicle. The equation of motion for the system is derived under the quarter-car condition, and numerical simulation is performed. Frequency amplification ratio (FAR) is defined as a ratio between the initial and the varying natural frequency of the system; a discontinuity in the FAR implies a resonance condition. Analysis is mainly focused on patterns, frequency variation characteristics, and discontinuity points of the FAR under the vehicle mass and tire stiffness variations. The result reveals that the interactions between the system affects the natural frequency of both the vehicle and the bridge in similar frequency regions that can be visually identified at the middle of the span using the FAR.

A Study on the Efficiency Analysis for the Automotive Parts Manufacturer Using Data Envelopment Analysis (DEA를 활용한 자동차부품 기업의 효율성 평가에 관한 연구)

  • Cho, Hyung-Kook;Lee, Cheol-Gyu;Yoo, Wang-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.609-615
    • /
    • 2014
  • Due to the recent global recession, the car industry demand levels have plummeted which led to a crisis in the automotive parts industry for the first time in history. Since the fourth quarter of 2008, the automotive parts manufacturers in America have faced a record loss and those in Japan and Europe who also had a strong track record are facing a weak economy. In addition, the domestic automotive parts industry is also affected by the global economic crisis. This research is that the relative efficiency analysis utilizing the DEA has done on the object of 25 small and medium-sized automotive parts manufacturers publicly listed, As the efficiency analysis result 6 of 25 manufacturers are efficient in CCR model and 12 manufactures have shown efficiency in BCC model, the efficiency analysis in consideration of the manufacturer size. The manufacturers with efficiency 1 in 25 manufacturers are DMU 1, 5, 7, 10, 18, 24 and the relatively benchmarking objects in other manufactures are DMU 1, 10, 24, Based on the results of this research, a direction to the domestic automotive parts manufacturers as well as a significant information will be provided in managing the companies in the future by the improvement of management efficiency through the practical efficiency analysis.

Cultural Landscape Analysis of Market Space in Chinatown - A Case Study of the 'Chung-Ang Market of Dairimdong' - (중국 이주민 거주지역 내 시장공간의 문화경관해석 - 서울시 대림동 중앙시장을 대상으로 -)

  • Chun, Hyun-Jin;Lee, June;Jiang, Long;Kim, Sung-Kyun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.5
    • /
    • pp.73-87
    • /
    • 2012
  • Nowadays, the Korean society is full of multiculturalism as there are many foreign ethnic enclaves. Many Chinese quarters are built in various parts of Korea along with the increasing population of Chinese immigrant. Especially, the Chinese quarter has shown the sign of time and the cultural characteristic of the local residents. This research is to study the market space of Chinese ethnic enclaves in Dairimdong. This research method is the field study to use a participant observation. Below are the research results: Chinese merchants put a private object such as "tanzi" on a sidewalk and install large awning covered full of sidewalk. Sidewalk transform from an outdoor space into an internal space because of Chinese merchants. Passers-by move to use vehicle roads and transform not only the car's space but also the passers-by space. Urban planners originally classify space into three categories, which are building - sidewalk - vehicles road. However, after Chinese came to the market, Chinese classified space into new three categories which is building - space for both sidewalk and "tanzi" - space for both sidewalk and vehicles road. New classification of space is quite different from the previous. In addition, Chinese thinks that the Dairimdong's Market is a very comfortable place. Because Dairimdong Market have many Chinese physical facilities. Next, Chinese thinks that the Dairimdong Market is a very friendly place to buy Chinese products easily. This market has become a place of consumption for the Chinese. Eventually, Dairimdong's Market has changed because of Chinese immigrants. It is possible to make satisfactory planning and design proposal to build Chinese quarters in the future through the explanation of space and status by way of culture. There are many careless mistakes in previous subjective planning and design proposal of the designers. Thus, it should consider the problems created by their way of use in later planning and design.