• 제목/요약/키워드: Quantum-mechanical

검색결과 281건 처리시간 0.027초

Front-end investigations of the coated particles of nuclear fuel samples - ion polishing method

  • Krajewska, Zuzanna M.;Buchwald, Tomasz;Tokarski, Tomasz;Gudowski, Wacław
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.1935-1946
    • /
    • 2022
  • The investigations of the coated-particles of nuclear fuel samples are carried out in three stages: front-end, irradiation in the reactor core, and post-irradiation examination. The front-end stage is the initial analysis of the failures rates of produced samples before they are placed in the reactor core. The purpose of the verification is to prepare the particles for an experiment that will determine the degree of damage to the coated particles at each stage. Before starting experiments with the samples, they must be properly prepared. Polishing the samples in order to uncover the inner layers is an important, initial experimental step. The authors of this paper used a novel way to prepare samples for testing - by applying an ion polisher. Mechanical polishing used frequently for sample preparations generates additional mechanical damages in the studied fuel particle, thus directly affecting the experimental results. The polishing methods were compared for three different coated particles using diagnostic methods such as Raman spectroscopy, scanning electron microscopy, and confocal laser scanning microscopy. Based on the obtained results, it was concluded that the ion polishing method is better because the level of interference with the structures of the individual layers of the tested samples is much lower than with the mechanical method. The same technique is used for the fuel particles undergone ion implantation simulating radiation damage that can occur in the reactor core.

Studying the influences of mono-vacancy defect and strain rate on the unusual tensile behavior of phosphorene NTs

  • Hooman Esfandyari;AliReza Setoodeh;Hamed Farahmand;Hamed Badjian;Greg Wheatley
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.59-65
    • /
    • 2023
  • In this present article, the mechanical behavior of single-walled black phosphorene nanotubes (SW-αPNTs) is simulated using molecular dynamics (MD). The proposed model is subjected to the axial loading and the effects of morphological parameters, such as the mono-vacancy defect and strain rate on the tensile behavior of the zigzag and armchair SW-αPNTs are studied as a pioneering work. In order to assess the accuracy of the MD simulations, the stress-strain response of the current MD model is successfully verified with the efficient quantum mechanical approach of the density functional theory (DFT). Along with reproducing the DFT results, the accurate MD simulations successfully anticipate a significant variation in the stress-strain curve of the zigzag SW-αPNTs, namely the knick point. Predicting such mechanical behavior of SW-αPNTs may be an important design factor for lithium-ion batteries, supercapacitors, and energy storage devices. The simulations show that the ultimate stress is increased by increasing the diameter of the pristine SW-αPNTs. The trend is identical for the ultimate strain and stress-strain slope as the diameter of the pristine zigzag SW-αPNTs enlarges. The obtained results denote that by increasing the strain rate, the ultimate stress/ultimate strain are respectively increased/declined. The stress-strain slope keeps increasing as the strain rate grows. It is worth noting that the existence of mono-atomic vacancy defects in the (12,0) zigzag and (0,10) armchair SW-αPNT structures leads to a drop in the tensile strength by amounts of 11.1% and 12.5%, respectively. Also, the ultimate strain is considerably altered by mono-atomic vacancy defects.

광변형 고분자의 동적 진동에 관한 멀티스케일 해석 (Multiscale Analysis on Vibration of the Photo Responsive Polymer)

  • 윤정훈;;정하영;최준명;조맹효
    • 한국전산구조공학회논문집
    • /
    • 제29권6호
    • /
    • pp.571-575
    • /
    • 2016
  • 광변형 고분자(PRP)는 PRP 내부에 함유된 아조벤젠(azobenzene)의 광이성질화 현상에 의해 자외선을 받을 경우 수축을 하고, 이 상태에서 적외선을 받을 경우 원래대로 돌아오는 성질을 가지고 있다. 본 논문에서는 PRP의 진동 현상에 대한 동적해석이 논의된다. PRP의 광변형 양상을 예측하기 위해 양자역학, 고분자역학, 연속체 역학을 아우르는 멀티스케일 모델링 기법이 제안된다. PRP의 동적 진동 양상을 예측하기 위해 간단한 1D 빔 모델이 사용되었으며, FFT기법을 통해 진동 주파수 해석이 진행된다. 해석 결과 빛의 입력에 따른 PRP의 진동 양상은 빛의 편광 방향에 영향을 받는다는 것을 알 수 있다.

원자간력 현미경(AFM)과 펨토초 펄스 레이저를 이용한 나노 형상 가공 (AFM-based nanofabrication with Femtosecond pulse laser radiation)

  • 김승철;김승우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.149-150
    • /
    • 2006
  • We describe a novel method of scanning probe nanofabrication using a AFM(atomic force microscopy) tip with assistance of Femtosecond laser pulses to enhance fabrication capability. Illumination of the AFM tip with ultra-short light pulses induces a strong electric field between the tip and the metal surface, which allows removing metal atoms from the surface by means of field evaporation. Quantum simulation reveals that the field evaporation is triggered even en air when the induced electric field reaches the level of a few volts per angstrom, which is low enough to avoid unwanted thermal damages on most metal surfaces. For experimental validation, a Ti: sapphire Femtosecond pulse laser with 10 fs pulse duration at 800 nm center wavelength was used with a tip coated with gold to fabricate nanostructures on a thin film gold surface. Experimental results demonstrate that fine structures with critical dimensions less than ${\sim}10nm$ can be successfully made with precise control of the repetition rate of Femtosecond laser pulses.

  • PDF

QM/MM-MD 방법을 이용한 용액 속에서의 Potassium Thiocyanate의 Association/Dissociation Dynamics 연구

  • 남혜림;;최철호
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.347-358
    • /
    • 2014
  • 본 논문에서는 양자 역학적 분자 동역학(Quantum Mechanical/Molecular Mechanical-Molecular Dynamics, QM/MM-MD)을 통해 수용액에 녹아 있는 Potassium Thiocyanate의 dynamics를 연구했다. Umbrella sampling technique을 활용하여 association/dissociation에 해당하는 Free energy surface를 구했다. 두 개의 Free energy minimum이 녹아 있는 두 이온의 center of mass 사이의 거리가 $4{\AA}$일 때와 $5{\sim}6{\AA}$ 부근일 때 나타났으며 $4{\AA}$일 때 더 안정 했다. 본 논문에서는 $4{\AA}$일 때를 Contact Ion Pair(CIP) $6{\AA}$일 때를 Dissociation Ion Pair(DlP)라고 칭했다. 이 minimum들이 무엇인 지를 밝혀 내기 위해 추가 연구를 수행하였다. Free energy 상에서 가장 안정 할 때(CIP) solute인 Potassium thiocyanate의 구조를 살펴 봤더니 Potassium ion은 Thiocyanate ion의 Sulfur보다 Nitrogen side를 선호하였다. 그 원인을 알아보기 위해 salvation shell의 구조를 Radial distribution function을 통해 살펴 봤더니 물 분자가 Nitrogen보다 Sulfur와 더 강한 상호작용을 하고 있었다. 그로 인해 Potassium ion이 Nitrogen을 선호한단 결과가 나온 것이다. 한편, 두 번째 minimum은 물 분자가 Potassium 이온과 Thiocyanate 이온 사이에 flexible하게 bridging을 하는 구조였다. 또한 단순 양자 계산을 통해서도 비슷한 구조를 얻을 수 있었다. 그러나 QM 계산은 0K에서 수행하는 것이기 때문에 엔트로피 효과가 없는 계산이지만 본 연구는 온도 300K로 실제 용매와 가깝게 수행함으로써 고정되어 있는 구조가 아니라 엔트로피와 엔탈피가 균형적으로 존재하는 실제 용액 속에서의 구조를 처음으로 보여주는 것이다.

  • PDF

InGaN/GaN 양자우물의 SA-MOVPE에서 표면확산을 고려한 박막성장 해석 (Analysis of Film Growth in InGaN/GaN Quantum Wells Selective Area Metalorganic Vapor Phase Epitaxy including Surface Diffusion)

  • 임익태;윤석범
    • 반도체디스플레이기술학회지
    • /
    • 제10권3호
    • /
    • pp.29-33
    • /
    • 2011
  • Film growth rate and composition variation are numerically analyzed during the selective area growth of InGaN on the GaN triangular stripe microfacet in this study. Both the vapor phase diffusion and the surface diffusion are considered to determine the In composition on the InGaN surface. To obtain the In composition on the surface, flux of In atoms due to the surface diffusion is added to the concentration determined from the Laplace equation which is governing the gas phase diffusion. The solution model is validated by comparing the growth rates from the analyses to the experimental results of GaN and InN films. The In composition and resulting wave length are increased when the surface diffusion is considered. The In content is also increased according to the increasing mask width. The effect of mask width to the In content and wave length is increasing in the case of a small open region.

The Uncertainties in Contemporary Art

  • Pan Bo
    • International Journal of Advanced Culture Technology
    • /
    • 제11권2호
    • /
    • pp.170-177
    • /
    • 2023
  • In quantum mechanics, uncertainty refers to the uncertainty of a measurement physical quantity, because some mechanical quantity can only be in its eigenstate under certain conditions, and the values shown are discrete.The exact value can only be obtained by measuring it in the eigenstate of this mechanical quantity.Uncertainty is like a double-edged sword, which has both advantages and disadvantages in art itself and in the process of artistic creation. In this study, it is divided into three main parts. First, the existence of uncertainties in contemporary art is sorted out in two broad parts, the definition of the uncertainties in art and the specific expression in contemporary art, respectively, with examples from four aspects of psychological impact, accidental presentation effect, expression form and connection with the viewer. The purpose is to understand how uncertainties are expressed in the process of artistic creation. Second, the role of the uncertainties in artistic creation is analyzed through examples, and then it is proposed that artists should use uncertainties to serve art with a scientific and rational attitude. Thirdly, the application of uncertainties in my creative practice and their influences on my painting creation. In summary, every artistic creator should take art seriously and sincerely. The relationship among the creative subject, society and life is an eternal and continuous interaction, and art is a carrier of reflection. For the problems brought by uncertainties in artistic creation, from choosing new certainty by thinking to the emergence of uncertainties, such a cycle is the process of art sublimating from life and being closely related to life.

Statistical Study For The prediction of pKa Values of Substituted Benzaldoxime Based on Quantum Chemicals Methods

  • Al-Hyali, Emad A.S.;Al-Azzawi, Nezar A.;Al-Abady, Faiz M.H.
    • 대한화학회지
    • /
    • 제55권5호
    • /
    • pp.733-740
    • /
    • 2011
  • Multiple regression analysis was used for the calculation of pKa values of 15 substituted benzaldoximes by using various types of descriptors as parameters. These descriptors are based on quantum mechanical treatments. They were derived by employing semi-empirical calculation represented by the PM3 model and an Abinitio method expressed by Hartree-Fock(HF) model performed at the 6-311 G(d, p) level of theory. The parameters tested for their ability to represent the variations observed in the experimental pKa(s) are atomic and structural properties including Muliken charges on the atoms of hydroxyl group and C=N bond, the angle $C_6-C_1-C_7$, and length of O-H bond. Molecular properties are also used like energies of HOMO and LUMO, hardness(${\eta}$), chemical potential(${\mu}$), total energy(TE), dipole of molecule(DM), and electrophilicity index(W). The relation between pKa values and each of these parameters of the studied compounds is investigated. Depending on these relations, two sets of parameters were constructed for comparison between the PM3 and HF methods. The results obtained favor the Abinitio method for such applications although both models proved to have high predictive power and have sufficient reliability to describe the effect of substituents on pKa values of benzaldoxime compounds under consideration which is clear from the values of correlation coefficient $R^2$ obtained and the consistency between the experimental and the calculated values.

PECVD 방법으로 성장시킨 DLC 박막의 복소굴절율 및 성장조건에 따른 박막상수 변화 (Complex refractive index of PECVD grown DLC thin films and density variation versus growth condition)

  • 김상준;방현용;김상열;김성화;이상현;김성영
    • 한국광학회지
    • /
    • 제8권4호
    • /
    • pp.277-282
    • /
    • 1997
  • 광학소자나 전자소자의 코팅에 많이 이용되고 있는 Diamond-like Carbon(DLC) 박막의 복소굴절율을 광학적 방법을 사용하여 구하였다. PECVD(Plasma enhanced CVD)법에 의해 Si(100)기판과 비정질실리카 기판위에 각각 성장시킨 DLC 박막을 분광타원해석기와 분광광도계를 이용하여 타원해석 스펙트럼과 광투과율 스펙트럼을 측정하고, Sellmeier 분산관계식과 양자역학적 진동자 모델을 이용하여 분석하였다. 비정질실리카 위에 증착된 DLC 박막의 광투과영역에서 분광타원해석분석으로 굴절률 및 박막의 유효두께를 구하고 광흡수영역에서 투과스펙트럼을 역방계산하여 소광계수를 구한 뒤, 이 소광계수 스펙트럼에 최적 근사하는 양자역학적 분산식의 계수들을 회귀분석법으로 결정하여 복소굴절율을 구하였다. 그리고 모델링방법을 타워해석 스펙트럼에 적용하여 Si기판과 비정질이산화규소 기판위에 증착된 DLC 박막의 조밀도, 표면거칠기 등 박막상수를 박막의 성장조건에 따라 분석하였다.

  • PDF

LONGITUDINAL WAVES, STORING AND AMPLIFYING CAPABILITY OF INFORMATION IN WATER MOLECULES AND QUANTUM RESONANCE SPECTROMETER

  • Oh, Hung-Kuk
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.18-28
    • /
    • 1996
  • The outer-most electrons of metal atoms and the remaining valence electrons of any molecular atoms make three-dimensional crystallizing $\pi$-bondings. The rotating electrons on the three-dimensional crystallizing $\pi$-bonding orbitals of atoms make $\pi$-far infrared rays. Longitudinal wave is a propagation of a bundle of $\pi$-far infrared rays, which are produced by a dynamic impact on a solid bar. The $\pi$-far infrared rays make three-dimensional crystallizing $\pi$-bondings in the material, which reproduce the same $\pi$-far infrared rays. If a current signal is input into water molecules under a given electric potential field with $\pi$-far infrared rays (input information), the signal can be amplified because the $\pi$-far infrared rays make the $\pi$-bondings, which reduce electric resistance. The three-dimensional crystallizing $\pi$-bondings can induce normal electrons to move from one orbital to next one with a aid of potential electric field. Quantum Resonance Spectrometer is composed of tesla coil absorbing $\pi$-far infrared rays, tesla coil emitting varying electromagnetic waves signal generator, signal storage, human body amplifier, signal analyzer and data indicator. The absorbing tesla coil making varying magnetic field and downward and upward electric field, which resonates the $\pi$-far infrared rays coming out from specimen and absorbs them. The modulated current signal from the input square signal can generate and emit varying electromagnetic waves from the tesla coil. The varying electro-magnetic waves make the three-dimensional crystallizing $\pi$-bondings and the $\pi$-far infrared rays in the water molecules.

  • PDF