• 제목/요약/키워드: Quantum-based

검색결과 908건 처리시간 0.028초

Novel Class of Entanglement-Assisted Quantum Codes with Minimal Ebits

  • Dong, Cao;Yaoliang, Song
    • Journal of Communications and Networks
    • /
    • 제15권2호
    • /
    • pp.217-221
    • /
    • 2013
  • Quantum low-density parity-check (LDPC) codes based on the Calderbank-Shor-Steane construction have low encoding and decoding complexity. The sum-product algorithm(SPA) can be used to decode quantum LDPC codes; however, the decoding performance may be significantly decreased by the many four-cycles required by this type of quantum codes. All four-cycles can be eliminated using the entanglement-assisted formalism with maximally entangled states (ebits). The proposed entanglement-assisted quantum error-correcting code based on Euclidean geometry outperform differently structured quantum codes. However, the large number of ebits required to construct the entanglement-assisted formalism is a substantial obstacle to practical application. In this paper, we propose a novel class of entanglement-assisted quantum LDPC codes constructed using classical Euclidean geometry LDPC codes. Notably, the new codes require one copy of the ebit. Furthermore, we propose a construction scheme for a corresponding zigzag matrix and show that the algebraic structure of the codes could easily be expanded. A large class of quantum codes with various code lengths and code rates can be constructed. Our methods significantly improve the possibility of practical implementation of quantum error-correcting codes. Simulation results show that the entanglement-assisted quantum LDPC codes described in this study perform very well over a depolarizing channel with iterative decoding based on the SPA and that these codes outperform other quantum codes based on Euclidean geometries.

양자 정보 기술을 위한 양자 광원 연구 동향 (Research Trend of Quantum Light Source for Quantum Information Technology)

  • 고영호;김갑중;최병석;한원석;윤천주;주정진
    • 전자통신동향분석
    • /
    • 제34권5호
    • /
    • pp.99-112
    • /
    • 2019
  • A quantum light source is an essential element for quantum information technology, including quantum communication, quantum sensor, and quantum computer. Quantum light sources including photon number state, entangled state, and squeezed state can be divided into two types according to the generation mechanism, namely single emitter and non-linear based systems. The single emitter platform contains atom/ion trap, solid-state defect/color center, two-dimensional material, and semiconductor quantum dot, which can emit deterministic photons. The non-linear based platform contains spontaneous parametric down-conversion and spontaneous four-wave mixing, which can emit probabilistic photon pairs. For each platform, we give an overview of the recent research trends of the generation, manipulation, and integration of single photon and entangled photon sources. The characteristics of quantum light sources are investigated for each platform. In addition, we briefly introduce quantum sensing, quantum communication, and quantum computing applications based on quantum light sources. We discuss the challenges and prospects of quantum light sources for quantum information technology.

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • 제10권spc호
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • 제18권4호
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.

결함허용 양자 컴퓨팅을 위한 양자 오류 복호기 연구 동향 (Research Trends in Quantum Error Decoders for Fault-Tolerant Quantum Computing)

  • 조은영;온진호;김재열;차규일
    • 전자통신동향분석
    • /
    • 제38권5호
    • /
    • pp.34-50
    • /
    • 2023
  • Quantum error correction is a key technology for achieving fault-tolerant quantum computation. Finding the best decoding solution to a single error syndrome pattern counteracting multiple errors is an NP-hard problem. Consequently, error decoding is one of the most expensive processes to protect the information in a logical qubit. Recent research on quantum error decoding has been focused on developing conventional and neural-network-based decoding algorithms to satisfy accuracy, speed, and scalability requirements. Although conventional decoding methods have notably improved accuracy in short codes, they face many challenges regarding speed and scalability in long codes. To overcome such problems, machine learning has been extensively applied to neural-network-based error decoding with meaningful results. Nevertheless, when using neural-network-based decoders alone, the learning cost grows exponentially with the code size. To prevent this problem, hierarchical error decoding has been devised by combining conventional and neural-network-based decoders. In addition, research on quantum error decoding is aimed at reducing the spacetime decoding cost and solving the backlog problem caused by decoding delays when using hardware-implemented decoders in cryogenic environments. We review the latest research trends in decoders for quantum error correction with high accuracy, neural-network-based quantum error decoders with high speed and scalability, and hardware-based quantum error decoders implemented in real qubit operating environments.

Quantum Secret Sharing Scheme with Credible Authentication based on Quantum Walk

  • Li, Xue-Yang;Chang, Yan;Zhang, Shi-Bin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권7호
    • /
    • pp.3116-3133
    • /
    • 2020
  • Based on the teleportation by quantum walk, a quantum secret sharing scheme with credible authentication is proposed. Using the Hash function and quantum local operation, combined with the two-step quantum walks circuit on the line, the identity authentication and the teleportation of the secret information in distribution phase are realized. Participants collaborate honestly to recover secret information based on particle measurement results, preventing untrusted agents and external attacks from obtaining useful information. Due to the application of quantum walk, the sender does not need to prepare the necessary entangled state in advance, simply encodes the information to be sent in the coin state, and applies the conditional shift operator between the coin space and the position space to produce the entangled state necessary for quantum teleportation. Security analysis shows that the protocol can effectively resist intercept/resend attacks, entanglement attacks, participant attacks, and impersonation attacks. In addition, the quantum walk circuit used has been implemented in many different physical systems and experiments, so this quantum secret sharing scheme may be achievable in the future.

동형암호적 양자계산이 가능한 양자오류정정부호 기법 (Quantum Error Correction Code Scheme used for Homomorphic Encryption like Quantum Computation)

  • 손일권;이종현;이원혁;석우진;허준
    • 융합보안논문지
    • /
    • 제19권3호
    • /
    • pp.61-70
    • /
    • 2019
  • 최근 엄청난 계산 능력을 보여주는 양자 컴퓨터와 정보 접근성이 높고 비용이 낮은 클라우드 컴퓨팅에 대한 개발이 활발하게 이루어지고 있다. 이러한 양자 컴퓨터의 경우 양자오류정정부호가 필수적이며, 클라우드 컴퓨팅의 경우 보안성 및 계산성을 확보하기 위해 동형암호가 사용될 수 있다. 각각 다른 목적을 위해 사용되는 이 두 기법은 서로 비슷한 가정을 바탕으로 하고 있어, 양자오류정정부호를 기반으로 동형암호를 구성하는 연구들이 진행되어왔다. 따라서 본 논문에서는 일반적인 양자오류정정부호를 변형하여 동형암호적 양자정보처리가 가능한 기법을 제시한다. 기존의 양자오류정정부호를 이용한 동형암호기법의 경우 부호를 사용하였지만 오류정정 능력이 전혀 없는데 반해, 제시한 양자오류정정부호 기법을 사용하면 동형암호적 양자정보처리가 가능하면서도, 동시에 양자오류정정부호 본연의 기능인 양자정보의 연산, 저장 중의 오류를 정정할 수 있는 장점이 존재한다.

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

양자암호 통신망에서 양자키 관리를 위한 통합 데이터 구조 (Integrated Data Structure for Quantum Key Management in Quantum Cryptographic Network)

  • 김현철
    • 융합보안논문지
    • /
    • 제21권1호
    • /
    • pp.3-7
    • /
    • 2021
  • 양자 역학을 기반으로 하는 양자암호통신에서는 각각의 정보를 개별적인 광자에 실어 전송하기 때문에 일부만 도청하는 것이 기본적으로 불가능하며, 침입자가 광자를 불법적으로 가로채 수신자에게 재전송을 하여도 양자 복제 불가능성 원리에 의해 같은 정보를 광자에 실어 보내는 것이 불가능하다. 한편 네트워크 기반 다양한 서비스의 폭발적 증대와 함께 해당 서비스의 보안성 보장이 필수적으로 요구되면서 양자암호 통신망의 구축 및 관련 서비스가 다양한 형태로 추진되고 있다. 그러나 양자키 분배(QKD: Quantum Key Distribution) 기술의 발전과는 별개로 이를 활용한 네트워크 구축 및 다양한 양자암호 기반 서비스 제공 방안에 관해서는 많은 연구가 필요한 상태이다. 본 논문에서는 양자암호 장치를 기반으로, 다양한 양자암호 통신망 장비 간에 양자키를 전달하고 암호화된 전송환경 구현을 위한 통합 데이터 구조를 제안하였다.

The Future of Quantum Information: Challenges and Vision

  • Kim, Dohyun;Kang, Jungho;Kim, Tae Woo;Pan, Yi;Park, Jong Hyuk
    • Journal of Information Processing Systems
    • /
    • 제17권1호
    • /
    • pp.151-162
    • /
    • 2021
  • Quantum information has passed the theoretical research period and has entered the realization step for its application to the information and communications technology (ICT) sector. Currently, quantum information has the advantage of being safer and faster than conventional digital computers. Thus, a lot of research is being done. The amount of big data that one needs to deal with is expected to grow exponentially. It is also a new business model that can change the landscape of the existing computing. Just as the IT sector has faced many challenges in the past, we need to be prepared for change brought about by Quantum. We would like to look at studies on quantum communication, quantum sensing, and quantum computing based on quantum information and see the technology levels of each country and company. Based on this, we present the vision and challenge for quantum information in the future. Our work is significant since the time for first-time study challengers is reduced by discussing the fundamentals of quantum information and summarizing the current situation.