• 제목/요약/키워드: Quantum simulation

검색결과 243건 처리시간 0.034초

Radiotoxicity flux and concentration as complementary safety indicators for the safety assessment of a rock-cavern type LILW repository

  • Jo, Yongheum;Han, Sol-Chan;Ok, Soon-Il;Choi, Seonggyu;Yun, Jong-Il
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1324-1329
    • /
    • 2018
  • This study presents a practical application of complementary safety indicators, which can be applied in a safety assessment of a radioactive waste repository by excluding a biosphere simulation and comparing the artificial radiation originating from the repository with the background natural radiation. Complementary safety indicators (radiotoxicity flux from geosphere and radiotoxicity concentration in seawater) were applied in the safety assessment of a rock-cavern type low and intermediate level radioactive waste (LILW) repository in the Republic of Korea. The natural radionuclide ($^{40}K$, $^{226,228}Ra$, $^{232}Th$, and $^{234,235,238}U$) concentrations in the groundwater and seawater at the Gyeongju LILW repository site were measured. Based on the analyzed concentrations of natural radionuclides, the levels of natural radiation were determined to be $8.6{\times}10^{-5}$ - $8.0{\times}10^{-4}Sv/m^2/yr$ and $6.95{\times}10^{-5}Sv/m^3$ for radiotoxicity flux from the geosphere and radiotoxicity concentration in seawater, respectively. From simulation results obtained using a Goldsim-based safety assessment model, it was determined that the radiotoxicity of radionuclides released from the repository is lower than that of the natural radionuclides inherently present in the natural waters. The applicability of the complementary safety indicators to the safety case was discussed with regard to reduction of the uncertainty associated with biosphere simulations, and communication with the public.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

Design and Simulation of an RSFQ 1-bit ALU

  • Kim, Jin-Young;Baek, Seung-Hun;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2003년도 High Temperature Superconductivity Vol.XIII
    • /
    • pp.53-53
    • /
    • 2003
  • PDF

XIC tools을 사용한 고온 초전도 Rapid Single Flux Quantum 1-bit A/D Converter의 Simulation과 회로 Layout (Simulations and Circuit Layouts of HTS Rapid Single Flux Quantum 1-bit A/D Converter by using XIC Tools)

  • 남두우;홍희송;정구락;강준희
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.131-134
    • /
    • 2002
  • In this work, we have developed a systematic way of utilizing the basic design tools for superconductive electronics. This include WRSPICE, XIC, margin program, and L-meter. Since the high performance analog-to- digital converter can be built with Rapid Single Flux Quantum (RSFQ) logic circuits the development of superconductive analog-to-digital converter has attracted a lot of interests as one of the most prospective area of the application of Josephson Junction technology. One of the main advantages in using Rapid Single Flux Quantum logic in the analog-to-digital converter is the low voltage output from the Josephson junction switching, and hence the high resolution. To design an 1-bit analog-digital converter, first we have used XIC tool to compose a circuit schematic, and then studied the operational principle of the circuit with WRSPICE tool. Through this process, we obtained the proper circuit diagram of an 1-bit analog-digital converter circuit. Based on this circuit we performed margin calculations of the designed circuits and optimized circuit parameters. The optimized circuit was laid out as a mask drawing. Inductance values of the circuit layout were calculated with L-meter. Circuit inductors were adjusted according to these calculations and the final layout was obtained.

  • PDF

QCA 기반의 효율적인 PCA 구조 설계 (Design of PCA Architecture Based on Quantum-Dot Cellular Automata)

  • 신상호;이길제;유기영
    • 한국항행학회논문지
    • /
    • 제18권2호
    • /
    • pp.178-184
    • /
    • 2014
  • PCA에 기반을 둔 CMOS 소자 기술은 메모리 혹은 ALU 회로의 구현에 매우 효율적이다. 그러나 CMOS 소자 스케일링 기술의 한계로 인하여 이를 해결할 수 있는 새로운 기술의 필요성이 대두되었고, 양자점 셀룰러 오토마타(QCA; quantum-dot cellular automata)는 이를 해결할 수 있는 기술로 등장했다. 본 논문에서는 QCA에 기반을 둔 효율적인 PCA 구조를 설계한다. 설계하는 PCA 구조에서의 D 플립플롭과 XOR 논리게이트는 기존에 제안되었던 회로를 사용하고, 입력 제어 스위치와 규칙 제어 스위치는 QCA에 기반을 두고 새롭게 설계한다. 설계된 PCA 구조는 QCA디자이너를 이용하여 시뮬레이션을 수행하고, 그 결과를 기존의 것과 비교 및 분석하여 설계된 구조의 효율성을 확인한다.

개선된 동적 퀀텀 크기 Pfair 스케줄링의 구현 (An Implementation of Improved Dynamic Quantum-Size Pfair Scheduling)

  • 김남진;김인국
    • 한국산학기술학회논문지
    • /
    • 제10권10호
    • /
    • pp.2760-2765
    • /
    • 2009
  • 다중 프로세서 환경에서 경성 실시간 태스크 집합의 스케줄링 문제를 해결하는 Pfair 스케줄링 알고리즘은 고정된 퀀텀 크기를 기반으로 한다. 최근 mode change 환경에서 최대 퀀텀 크기를 동적으로 결정하는 방법이 제안되었는데, 이 방법에서는 태스크들의 주기가 감소되는 경우만을 다루고 있다. 본 논문에서는 태스크들의 주기가 증가되는 경우까지도 고려하여 최대 퀀텀 크기를 동적으로 결정하는 개선된 방법을 제안하였고 모의실험에서 이를 구현하여 효율성을 입증하였다.

Accurate Range-free Localization Based on Quantum Particle Swarm Optimization in Heterogeneous Wireless Sensor Networks

  • Wu, Wenlan;Wen, Xianbin;Xu, Haixia;Yuan, Liming;Meng, Qingxia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권3호
    • /
    • pp.1083-1097
    • /
    • 2018
  • This paper presents a novel range-free localization algorithm based on quantum particle swarm optimization. The proposed algorithm is capable of estimating the distance between two non-neighboring sensors for multi-hop heterogeneous wireless sensor networks where all nodes' communication ranges are different. Firstly, we construct a new cumulative distribution function of expected hop progress for sensor nodes with different transmission capability. Then, the distance between any two nodes can be computed accurately and effectively by deriving the mathematical expectation of cumulative distribution function. Finally, quantum particle swarm optimization algorithm is used to improve the positioning accuracy. Simulation results show that the proposed algorithm is superior in the localization accuracy and efficiency when used in random and uniform placement of nodes for heterogeneous wireless sensor networks.

Impacts of Burnup-Dependent Swelling of Metallic Fuel on the Performance of a Compact Breed-and-Burn Fast Reactor

  • Hartanto, Donny;Heo, Woong;Kim, Chihyung;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • 제48권2호
    • /
    • pp.330-338
    • /
    • 2016
  • The U-Zr or U-TRU-Zr cylindrical metallic fuel slug used in fast reactors is known to swell significantly and to grow during irradiation. In neutronics simulations of metallic-fueled fast reactors, it is assumed that the slug has swollen and contacted cladding, and the bonding sodium has been removed from the fuel region. In this research, a realistic burnup-dependent fuel-swelling simulation was performed using Monte Carlo code McCARD for a single-batch compact sodium-cooled breed-and-burn reactor by considering the fuel-swelling behavior reported from the irradiation test results in EBR-II. The impacts of the realistic burnup-dependent fuel swelling are identified in terms of the reactor neutronics performance, such as core lifetime, conversion ratio, axial power distribution, and local burnup distributions. It was found that axial fuel growth significantly deteriorated the neutron economy of a breed-and-burn reactor and consequently impaired its neutronics performance. The bonding sodium also impaired neutron economy, because it stayed longer in the blanket region until the fuel slug reached 2% burnup.

Monte Carlo simulations of criticality safety assessments of transuranic element storage in a pyroprocess facility

  • Kim, Jinhwan;Kim, Jisoo;Lim, Kyung Taek;Ahn, Seong Kyu;Park, Se Hwan;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.815-819
    • /
    • 2018
  • In this study, criticality safety assessments of the potential for storing transuranic element (TRU) ingots via a pyroprocess were evaluated to determine the appropriate TRU storage design parameters, in this case the ratio of the TRU ingot height to the radius and the number of TRU ingot canisters stacked within a container. Various accident situations were modeled over a modeling period of 5 years for a cumulative inventory of TRU ingots with various water densities in submerged containers and with various pitches between the containers in the facility. Under these combinations, we calculated the threshold of TRU height and radius ratio depending on the number of canisters in a container to keep the stored TRU in a subcritical state. The ratio of the TRU ingot height to radius should not exceed 4.5, 1.1, 0.5, 0.3, and 0.2 for two, three, four, five, and six levels of stacked canisters in a container, respectively.