• 제목/요약/키워드: Quantum simulation

검색결과 237건 처리시간 0.031초

실리콘 나노선 트렌지스터 양자 효과의 2차원 시뮬레이션 (2D-Simulation of Quantum Effects in Silicon Nanowire Transistor)

  • 황민영;최창용;구상모
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.132-132
    • /
    • 2009
  • A 2D-simulation using a quantum model of silicon nanowire (SiNW) field-effect transistors (FETs) have been performed by the effective mass theory. We have investigated very close for real device analysis, so we used to the non-equilibrium Green's function (NEGF) and the density gradient of quantum model. We investigated I-V characteristics curve and C-V characteristics curve of the channel thickness from 5nm to 200nm. As a result of simulation, even higher drain current in SiNW using a quantum model was observed than in SiNW using a non-quantum model. The reason of higher drain current can be explained by the quantum confinement effect.

  • PDF

2차원 양자 역학적 모델링 및 시뮬레이션 : FinFET (2D(Dimension) Quantum Mechanical Modeling and Simulation : FinFET)

  • 김기동;권오섭;서지현;원태영
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 II
    • /
    • pp.775-778
    • /
    • 2003
  • In this paper, we report our quantum mechanical approach for the analysis of FinFET in a self-consistent manner. The simulation results are carefully investigated for FinFET with an electrical channel length(Leff) of 30nm and with a fin thickness(Tsi) of 10~35nm. We also demonstrated the differences in the simulations for the classical and quantum-mechanical simulation approaches, respectively. These simulation results also imply that it is necessary to solve the coupled Poisson and Schrodinger equations in a self-consistent manner for analyzing the sub-30nm MOSFETS including FinFET.

  • PDF

GaAs/AlGaAs 3-Quantum Well 양자폭포레이저 (Quantum Cascade Lasers)에서 허용되는 에피정밀도를 위한 활성영역 모의실험 (Active Layer Simulation for the Tolerance of Epi-layer Thickness at CaAs/AlGaAs 3-Quantum Well Quantum Cascade Lasers)

  • 이혜진;;한일기;이정일;김문덕
    • 한국진공학회지
    • /
    • 제16권4호
    • /
    • pp.273-278
    • /
    • 2007
  • 양자폭포레이저에서 활성영역의 모의실험을 위하여 Runge-Kutta 방법과 shooting 방법을 이용하여 슈뢰딩거 방정식의 해를 구하였다. 활성영역의 두께 변화에 대하여 발진파장, 포논공명 에너지, 분극행렬요소 (dipole matrix element) 등의 특성변화를 관찰하였고, 이로부터 양자폭포레이저를 위한 에피성장에서 허용될 수 있는 최소한의 두께 정밀도를 제안하였다.

Simulation of the light emission from quantum-well based heterojunction bipolar transistors

  • 박영규;박문호;김광웅;박정호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.52-52
    • /
    • 2009
  • In this work, we demonstrate the modelling and simulation of the AlGaAs/GaAs quantum-well based light emitting transistor(LET). Based on the experimental and theoretical model, we have compared between a heterojunction bipolar transistor(HBT) structure with quantum wells in the base region and a HBT without quantum wells in the base region. For the purpose of optimizing device design, several analytic and numerical studies have been presented.

  • PDF

Design and Simulation of an 808 nm InAlAs/AlGaAs GRIN-SCH Quantum Dot Laser Diode

  • Chan, Trevor;Son, Sung-Hun;Kim, Kyoung-Chan;Kim, Tae-Geun
    • Journal of the Optical Society of Korea
    • /
    • 제15권2호
    • /
    • pp.124-127
    • /
    • 2011
  • Quantum dots were designed within a GRIN-SCH(Graded index - Separate confinement Heterostructure) heterostructure to create a high power InAlAs/AlGaAs laser diode. 808 nm light emission was with a quantum dot composition of In0.665Al0.335As and wetting layer composition of Al0.2Ga0.8As by LASTIP simulation software. Typical characteristics of GRIN structures such as high confinement ratios and Gaussian beam profiles were shown to still apply when quantum dots are used as the active media. With a dot density of 1.0x1011 dots/cm2, two quantum dot layers were found to be good enough for low threshold, high-power laser applications.

계산과학플랫폼 기반 온라인 양자화학 실험 환경 개발 (Development of Online Quantum Chemistry Experiment Environment Based on Computational Science Platform)

  • 전인호;온누리;권예진;서정현;이종숙
    • 인터넷정보학회논문지
    • /
    • 제21권5호
    • /
    • pp.97-107
    • /
    • 2020
  • This paper introduces an online experiment environment based on a computational science platform that can be used for various purposes ranging from basic education to quantum chemistry and professional quantum chemistry research. The simulation environment was constructed using a simulation workbench and simulation workflow, which are execution environment services of Science App provided by the computational science platform. We developed an environment in which learners can learn independently without an instructor by selecting experiment topics that can be used in various areas of chemistry, and offering the learning materials of the topics in a form of e-learning content that includes theory and simulation exercises. To verify the superiority of the proposed system, it was compared with WebMO, a state-of-the-art web-based quantum chemistry simulation service.

Simulation of superconducting cavities for quantum computing

  • Park, Seong Hyeon;An, Junyoung;Bang, Jeseok;Hahn, Seungyong
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권3호
    • /
    • pp.22-26
    • /
    • 2019
  • With an increasing potential to realize quantum computer, it has recently been an important issue to extend the capabilities of RF cavities to maintain longer coherent quantum system. Using superconductors instead of normal metals allows the quantum system to have a substantially enhanced quality factor. In this paper, surface impedances of superconducting cavities are calculated by the Mattis-Bardeen theory with Python & MATLAB programs. With a simulation of electromagnetic field distribution, the sensitivity to dielectric and surface losses of the superconducting cavities are determined. Then calculations of the resonance frequency and quality factor of three-dimensional superconducting resonators made of Al or Nb are discussed.

Role of Quantum Confinement Effect on Tunneling Operation of LTFET Devices

  • Najam, Faraz;Yu, Yun Seop
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 추계학술대회
    • /
    • pp.241-242
    • /
    • 2017
  • Part of the channel in L-shaped tunnel field-effect transistor (LTFET) is very thin and suffers from quantum confinement effect. Role of quantum confinement effect on band-to-band-tunneling (BTBT) of LTFET was investigated using numerical simulation and band diagram analysis. It was found that quantum confinement effect significantly affects the BTBT mechanism of LTFET devices.

  • PDF

방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석 (A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation)

  • 김기윤;김명수;임경택;이은중;김찬규;박종환;조규성
    • 방사선산업학회지
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.