• 제목/요약/키워드: Quantum communication

검색결과 186건 처리시간 0.022초

양자정보통신기술 현황과 전망 (Status and Prospects of Quantum Information Communication Technologies(Q-ICT))

  • 박성수;송호영
    • 전자통신동향분석
    • /
    • 제34권2호
    • /
    • pp.60-72
    • /
    • 2019
  • Commercial services providing quantum cryptographic communication are available in China and the United States of America (USA), and a commercial cloud service for quantum computing is available in the USA. This has been possible since the early stage prototypes of quantum technologies have transitioned from theory to practical applications. This has led to the development of a new industrial ecosystem so that governments are announcing plans to support further research and development, new ventures are being launched, and a market is emerging. We will discuss the technological possibilities of future developments from the early-stage achievements.

Evolutionary Neural Network based on Quantum Elephant Herding Algorithm for Modulation Recognition in Impulse Noise

  • Gao, Hongyuan;Wang, Shihao;Su, Yumeng;Sun, Helin;Zhang, Zhiwei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권7호
    • /
    • pp.2356-2376
    • /
    • 2021
  • In this paper, we proposed a novel modulation recognition method based on quantum elephant herding algorithm (QEHA) evolving neural network under impulse noise environment. We use the adaptive weight myriad filter to preprocess the received digital modulation signals which passing through the impulsive noise channel, and then the instantaneous characteristics and high order cumulant features of digital modulation signals are extracted as classification feature set, finally, the BP neural network (BPNN) model as a classifier for automatic digital modulation recognition. Besides, based on the elephant herding optimization (EHO) algorithm and quantum computing mechanism, we design a quantum elephant herding algorithm (QEHA) to optimize the initial thresholds and weights of the BPNN, which solves the problem that traditional BPNN is easy into local minimum values and poor robustness. The experimental results prove that the adaptive weight myriad filter we used can remove the impulsive noise effectively, and the proposed QEHA-BPNN classifier has better recognition performance than other conventional pattern recognition classifiers. Compared with other global optimization algorithms, the QEHA designed in this paper has a faster convergence speed and higher convergence accuracy. Furthermore, the effect of symbol shape has been considered, which can satisfy the need for engineering.

단일광자 검출기 기술개발 동향 (Single Photon Detectors Technologies Development Trends for Quantum Information)

  • 이욱재;심재식;윤천주
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.21-33
    • /
    • 2020
  • Single photon detector technologies have emerged as powerful tools in optical quantum information applications such as quantum communication, quantum information, and integrated quantum photonics. Owing to significant attempts in the previous decade at improving photon-counting detectors, several single photon detectors with high efficiency and low noise have been realized within the optical wavelength regime. In this paper, we provide an overview of current studies on single photon detectors operating at wavelengths from the ultraviolet to the infrared. In addition, we discuss applications of single photon detector technologies in quantum communication and integrated quantum photonics.

Quantum Computing Cryptography and Lattice Mechanism

  • Abbas M., Ali Al-muqarm;Firas, Abedi;Ali S., Abosinnee
    • Journal of information and communication convergence engineering
    • /
    • 제20권4호
    • /
    • pp.242-249
    • /
    • 2022
  • Classical cryptography with complex computations has recently been utilized in the latest computing systems to create secret keys. However, systems can be breached by fast-measuring methods of the secret key; this approach does not offer adequate protection when depending on the computational complexity alone. The laws of physics for communication purposes are used in quantum computing, enabling new computing concepts to be introduced, particularly in cryptography and key distribution. This paper proposes a quantum computing lattice (CQL) mechanism that applies the BB84 protocol to generate a quantum key. The generated key and a one-time pad encryption method are used to encrypt the message. Then Babai's algorithm is applied to the ciphertext to find the closet vector problem within the lattice. As a result, quantum computing concepts are used with classical encryption methods to find the closet vector problem in a lattice, providing strength encryption to generate the key. The proposed approach is demonstrated a high calculation speed when using quantum computing.

양자키 교환과 AES를 이용한 비밀통신 연구 (Research of Secret Communication Using Quantum key Distribution and AES)

  • 정영철;임광철
    • 한국정보통신학회논문지
    • /
    • 제18권1호
    • /
    • pp.84-90
    • /
    • 2014
  • 비밀통신의 발전은 아날로그 통신에서 디지털 통신으로 진보해 왔다. 디지털통신상의 비밀통신은 one-time pad의 안전성을 승계하여 주로 설계 되어 왔다. One-time pad의 안전성은 상호 보관하는 비밀키의 안전성에 기인하고 비밀키의 교환에 의한 상호 동기화가 가장 중요한 요소이다. 본 논문에서는 quantum cryptography system 중 BB84 알고리즘의 수학적 안전도를 살펴보고 이를 이용하여 양자 키 전송을 시행한다. 생성된 키는 개인의 각 단말에서 AES의 64번 라운드를 시행한 ciphertext을 상호 교환하는 One-time Pad 형 알고리즘을 제안한다.

퀀텀정보통신기술의 산업적 응용가능성에 관한 연구 (A Study on the Industrial Applications of Quantum Information Processing and Communication)

  • 권문주;김창선;박성택;김태웅
    • 디지털융복합연구
    • /
    • 제11권7호
    • /
    • pp.173-184
    • /
    • 2013
  • 퀀텀정보통신기술은 원자 정도의 매우 작은 소립자를 의미하는 퀀텀의 속성을 연구하는 퀀텀역학에 기반을 두고 연구개발이 진행되는 분야로서, 기존 컴퓨터의 역량을 뛰어넘는 엄청난 계산능력과 커뮤니케이션 파워를 보일 수 있다. 퀀텀정보기술은 기존 컴퓨터의 0과 1을 이용한 계산방식 대신 소위 0과 1 그리고 이 두 상태의 중첩상태를 이용한다. 기존에 생각조차 하기 힘들었던 퀀텀현상의 적극적 활용은 새로운 퀀텀기반 디바이스의 개발을 촉진시켰으며 이론적으로나마 퀀텀컴퓨터의 개발이 가능함으로 보여주고 있다. 이 분야의 새로운 발견은 초정밀 센서, 이미징 처리 디바이스, 새로운 컴퓨터 연산 패러다임의 개발로 이어져 기존에는 생각하기도 힘들었던 문제들을 효율적으로 해결해 나갈 수 있는 방법론은 제시하고 있다. 결과적으로 퀀텀정보통신분야는 특정 산업분야 전체를 파괴하고 새로운 산업을 창조할 수 있는 글로벌 경제구조의 변혁의 원천이 될 수 있다.

양자정보기술 연구개발의 거대한 물결 (Big Wave in R&D in Quantum Information Technology -Quantum Technology Flagship)

  • 황용수;백충헌;김태완;허재두
    • 전자통신동향분석
    • /
    • 제34권1호
    • /
    • pp.75-85
    • /
    • 2019
  • Quantum technology is undergoing a revolution. Theoretically, strange phenomena of quantum mechanics, such as superposition and entanglement, can enable high-performance computing, unconditionally secure communication, and high-precision sensing. Such theoretical possibilities have been examined in the last few decades. The goal now is to apply these quantum advantages to daily life. Europe, where quantum mechanics was born a 100 years ago, is struggling to be placed at the front of this quantum revolution. Thus, the European Commission has decided to invest 1 billion EUR over 10 years and has initiated the ramp-up phase with 20 projects in the fields of communication, simulation, sensing and metrology, computing, and fundamental science. This program, approved by the European Commission, is called the "Quantum Technology Flagship" program. Its first objective is to consolidate and expand European scientific leadership and excellence in quantum research. Its second objective is to kick-start a competitive European industry in quantum technology and develop future global industrial leaders. Its final objective is to make Europe a dynamic and attractive region for innovative and collaborative research and business in quantum technology. This program also trains next-generation quantum engineers to achieve a world-leading position in quantum technology. However, the most important principle of this program is to realize quantum technology and introduce it to the market. To this end, the program emphasizes that academic institutes and industries in Europe have to collaborate to research and develop quantum technology. They believe that without commercialization, no technology can be developed to its full potential. In this study, we review the strategy of the Quantum Europe Flagship program and the 20 projects of the ramp-up phase.

광통신용 GaAs 기반 1.3 μm GaAsSb/InGaAs와 GaAsSb/InGaNAs 양자우물 레이저의 광학적특성 시뮬레이션 (Simulation of Optical Characteristics of 1.3 μm GaAs-Based GaAsSb/InGaAs and GaAsSb/InGaNAs Quantum Well Lasers for Optical Communication)

  • 박승환
    • 한국전기전자재료학회논문지
    • /
    • 제24권1호
    • /
    • pp.1-6
    • /
    • 2011
  • Optical gain characteristics of $1.3{\mu}m$ type-II GaAsSb/InGaNAs/GaAs trilayer quantum well structures were studied using multi-band effective mass theory. The results were compared with those of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structures. In the case of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure, the energy difference between the first two subbands in the valence band is smaller than that of $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. Also, $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure shows larger optical gain than $1.3{\mu}m$ GaAsSb/InGaNAs/GaAs trilayer quantum well structure. This means that GaAsSb/InGaNAs/GaAs system is promising as long-wavelength optoelectronic devices for optical communication.

Relay Selection Scheme Based on Quantum Differential Evolution Algorithm in Relay Networks

  • Gao, Hongyuan;Zhang, Shibo;Du, Yanan;Wang, Yu;Diao, Ming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권7호
    • /
    • pp.3501-3523
    • /
    • 2017
  • It is a classical integer optimization difficulty to design an optimal selection scheme in cooperative relay networks considering co-channel interference (CCI). In this paper, we solve single-objective and multi-objective relay selection problem. For the single-objective relay selection problem, in order to attain optimal system performance of cooperative relay network, a novel quantum differential evolutionary algorithm (QDEA) is proposed to resolve the optimization difficulty of optimal relay selection, and the proposed optimal relay selection scheme is called as optimal relay selection based on quantum differential evolutionary algorithm (QDEA). The proposed QDEA combines the advantages of quantum computing theory and differential evolutionary algorithm (DEA) to improve exploring and exploiting potency of DEA. So QDEA has the capability to find the optimal relay selection scheme in cooperative relay networks. For the multi-objective relay selection problem, we propose a novel non-dominated sorting quantum differential evolutionary algorithm (NSQDEA) to solve the relay selection problem which considers two objectives. Simulation results indicate that the proposed relay selection scheme based on QDEA is superior to other intelligent relay selection schemes based on differential evolutionary algorithm, artificial bee colony optimization and quantum bee colony optimization in terms of convergence speed and accuracy for the single-objective relay selection problem. Meanwhile, the simulation results also show that the proposed relay selection scheme based on NSQDEA has a good performance on multi-objective relay selection.

양자의 중첩 특성을 이용한 소리의 생성 및 제어에 대한 연구 (A Study on The Create and Control of Sound using The Quantum Superposition Characteristics)

  • 조민호
    • 한국전자통신학회논문지
    • /
    • 제18권4호
    • /
    • pp.687-692
    • /
    • 2023
  • 이번 연구는 양자 컴퓨터가 가지는 중첩의 특성을 이용하여 음악을 만들어 보고자 하는 의도에서 시작하였다. 기존의 음악은 작곡가가 작곡한 것에 제한되는 특징을 가진다. 하지만, 양자 컴퓨터의 중첩을 이용한 음악은 제한된 범위 내에서 실행 시에 변화되는 음악적 특징을 가진다. 이를 이용하여, 실행 시에 특정 화음을 기준으로 변화하는 음악을 만들 수 있을 것이다. 이번 논문에서는 양자 컴퓨터와 기존 컴퓨터를 연결하여 소리를 발생시킨다, 그리고 중첩의 성질을 적용하여 변화하는 음을 만들어내는 것에 중점을 둔다.