Browse > Article
http://dx.doi.org/10.56977/jicce.2022.20.4.242

Quantum Computing Cryptography and Lattice Mechanism  

Abbas M., Ali Al-muqarm (Computer Technical Engineering Department, The Islamic University)
Firas, Abedi (Al-Zahraa University for Women)
Ali S., Abosinnee (Altoosi University College)
Abstract
Classical cryptography with complex computations has recently been utilized in the latest computing systems to create secret keys. However, systems can be breached by fast-measuring methods of the secret key; this approach does not offer adequate protection when depending on the computational complexity alone. The laws of physics for communication purposes are used in quantum computing, enabling new computing concepts to be introduced, particularly in cryptography and key distribution. This paper proposes a quantum computing lattice (CQL) mechanism that applies the BB84 protocol to generate a quantum key. The generated key and a one-time pad encryption method are used to encrypt the message. Then Babai's algorithm is applied to the ciphertext to find the closet vector problem within the lattice. As a result, quantum computing concepts are used with classical encryption methods to find the closet vector problem in a lattice, providing strength encryption to generate the key. The proposed approach is demonstrated a high calculation speed when using quantum computing.
Keywords
Quantum Cryptography; Key Distribution; BB84 Protocol; Lattice; CVP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 L. Strate, "The varieties of cyberspace: Problems in definition and delimitation," Western Journal of Communication, vol. 63, no. 3, pp. 382-412, Sep. 1999. DOI: 10.1080/10570319909374648.   DOI
2 V. Mavroeidis, K. Vishi, M. D. Zych, and A. Josang, "The impact of quantum computing on present cryptography," International Journal of Advanced Computer Science and Applications, vol. 9, no. 3, pp. 405-414, Mar. 2018. DOI: 10.14569/IJACSA.2018.090354.   DOI
3 D. N. Diep, "Multiparty quantum telecommunication using quantum fourier transforms," arXiv preprint arXiv:1705.02608, May 2017. DOI: 10.48550/arxiv.1705.02608.   DOI
4 A. Peres, Quantum Theory: Concepts and Methods, Springer Science & Business Media, 2006.
5 J. Shen, T. Zhou, X. Chen, J. Li, and W. Susilo, "Anonymous and traceable group data sharing in cloud computing," IEEE Transactions on Information Forensics and Security, vol. 13, no. 4, pp. 912-925, Apr. 2018. DOI: 10.1109/TIFS.2017.2774439.   DOI
6 M. Curty and D. J. Santos, "Quantum authentication of classical messages," Physical Review A - Atomic, Molecular, and Optical Physics, vol. 64, no. 6, pp. 6, Nov. 2001. DOI: 10.1103/PhysRevA.64.062309.   DOI
7 B. S. Shi, J. Li, J. M. Liu, X. F. Fan, and G. C. Guo, "Quantum key distribution and quantum authentication based on entangled state," Physics Letters, Section A: General, Atomic and Solid State Physics, vol. 281, no. 2-3, pp. 83-87, Mar. 2001. DOI: 10.1016/S0375-9601(01)00129-3.   DOI
8 D. Zhang and X. Li, "Quantum authentication using orthogonal product states," in Proceedings of Third International Conference on Natural Computation, Hainan, China, vol. 4, pp. 608-612, 2007. DOI: 10.1109/ICNC.2007.589.   DOI
9 C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," Theoretical Computer Science, vol. 560, no. P1, pp. 7-11, Mar. 2014. DOI: 10.1016/j.tcs.2014.05.025.   DOI
10 S. K. Routray, M. K. Jha, L. Sharma, R. Nyamangoudar, A. Javali, and S. Sarkar, "Quantum cryptography for IoT: APerspective," 2017 International Conference on IoT and Application (ICIOT), Nagapattinam, India, pp. 1-4, 2017. DOI: 10.1109/iciota.2017.8073638.   DOI
11 K. A. Balygin, I. B. Bobrov, A. N. Klimov, S. N. Molotkov, and M. I. Ryzhkin, "A simple method of protection against a detector mismatch attack in quantum cryptography: The BB84 protocol," Journal of Experimental and Theoretical Physics, vol. 130, no. 2, pp. 161-169, Apr. 2020. DOI: 10.1134/S1063776120010136.   DOI
12 P. Sazonova and S. Krendelev, "Parametric hash function resistant to attack by quantum computer," in Proceedings of the 2018 Federated Conference on Computer Science and Information Systems, Poznan, Poland, pp. 387-390, 2018. DOI: 10.15439/2018F254.   DOI
13 J. Choi, S. Oh, and J. Kim, "The useful quantum computing techniques for artificial intelligence engineers," in Proceedings of International Conference on Information Networking, Barcelona, Spain, pp. 1-3, 2020. DOI: 10.1109/ICOIN48656.2020.9016555.   DOI
14 K. Shannon., E. Towe, and O. K. Tonguz, "On the use of quantum entanglement in secure communications: A survey," arXiv preprint arXiv:2003.07907, Mar. 2020. DOI: 10.48550/arxiv.2003.07907.   DOI
15 F. Xu, X. Ma, Q. Zhang, H. K. Lo, and J. W. Pan, "Secure quantum key distribution with realistic devices," Reviews of Modern Physics, vol. 92, no. 2, pp. 025002, Jun. 2020. DOI: 10.1103/REVMODPHYS.92.025002.   DOI
16 P. D. M. Lara, D. A. Maldonado-Ruiz, S. D. A. Diaz, L. I. B. Lopez, and A. L. V. Caraguay, "Trends on computer security: Cryptography, user authentication, denial of service and intrusion detection," arXiv preprint arXiv:1903.08052, Mar. 2019. DOI: 10.48550/arxiv.1903.08052.   DOI
17 C. Portmann and R. Renner, "Security in quantum cryptography," Reviews of Modern Physics, vol. 94, no. 2, Jun. 2022, DOI: 10.1103/revmodphys.94.025008.   DOI
18 S. Mitra, B. Jana, S. Bhattacharya, P. Pal, and J. Poray, "Quantum ryptography: Overview, security issues and future challenges," in 2017 4th International Conference on Opto-Electronics and Applied Optics, Kolkata, India, pp. 1-7, Apr. 2018. DOI: 10.1109/OPTRONIX.2017.8350006.   DOI
19 Z. Brakerski, R. Canetti, and L. Qian, "On the computational hardness needed for quantum cryptography," arXiv preprint arXiv:2209.04101, Sep. 2022. DOI: 10.48550/ARXIV.2209.04101.   DOI