• Title/Summary/Keyword: Quantum communication

Search Result 186, Processing Time 0.026 seconds

Special Quantum Steganalysis Algorithm for Quantum Secure Communications Based on Quantum Discriminator

  • Xinzhu Liu;Zhiguo Qu;Xiubo Chen;Xiaojun Wang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1674-1688
    • /
    • 2023
  • The remarkable advancement of quantum steganography offers enhanced security for quantum communications. However, there is a significant concern regarding the potential misuse of this technology. Moreover, the current research on identifying malicious quantum steganography is insufficient. To address this gap in steganalysis research, this paper proposes a specialized quantum steganalysis algorithm. This algorithm utilizes quantum machine learning techniques to detect steganography in general quantum secure communication schemes that are based on pure states. The algorithm presented in this paper consists of two main steps: data preprocessing and automatic discrimination. The data preprocessing step involves extracting and amplifying abnormal signals, followed by the automatic detection of suspicious quantum carriers through training on steganographic and non-steganographic data. The numerical results demonstrate that a larger disparity between the probability distributions of steganographic and non-steganographic data leads to a higher steganographic detection indicator, making the presence of steganography easier to detect. By selecting an appropriate threshold value, the steganography detection rate can exceed 90%.

Development of Highly Reliable Power and Communication System for Essential Instruments Under Severe Accidents in NPP

  • Choi, Bo Hwan;Jang, Gi Chan;Shin, Sung Min;Lee, Soo Ill;Kang, Hyun Gook;Rim, Chun Taek
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1206-1218
    • /
    • 2016
  • This article proposes a highly reliable power and communication system that guarantees the protection of essential instruments in a nuclear power plant under a severe accident. Both power and communication lines are established with not only conventional wired channels, but also the proposed wireless channels for emergency reserve. An inductive power transfer system is selected due to its robust power transfer characteristics under high temperature, high pressure, and highly humid environments with a large amount of scattered debris after a severe accident. A thermal insulation box and a glass-fiber reinforced plastic box are proposed to protect the essential instruments, including vulnerable electronic circuits, from extremely high temperatures of up to $627^{\circ}C$ and pressure of up to 5 bar. The proposed wireless power and communication system is experimentally verified by an inductive power transfer system prototype having a dipole coil structure and prototype Zigbee modules over a 7-m distance, where both the thermal insulation box and the glass-fiber reinforced plastic box are fabricated and tested using a high-temperature chamber. Moreover, an experiment on the effects of a high radiation environment on various electronic devices is conducted based on the radiation test having a maximum accumulated dose of 27 Mrad.

Bidirectional Magnetic Wireless Communication System under Inductive Power Transfer capable of Amplitude-Shift Keying(ASK) Modulation Control (자기유도 무선전력전송시 진폭편이변조 제어가 가능한 양방향 자기장 무선통신 시스템)

  • Choi, Byeung-Guk;Lee, Eun-Soo;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.275-281
    • /
    • 2016
  • A novel bidirectional magnetic wireless communication system is proposed in this study. This system provides the communication capability between the source and load sides by high-frequency signal while wireless power is transferred. Contrary to the conventional wireless communication systems using complex IC circuit and active components, the proposed system is simply composed of passive components. It is practical and beneficial for environmental robustness, cost effectiveness, and simple implementation. The detailed static analysis of the proposed system for power and communication lines is established. The proposed system is experimentally verified, and results show that a 0.1 voltage gain for communication line is obtained while a 2.0 voltage gain for the power line is achieved. The proposed system is adequate for practical applications as it allows the inductive power transfer system to wirelessly and easily communicate between the source and load sides.

Concepts and Challenges of Quantum Key Distribution (양자 키 분배의 개념과 과제)

  • Ko, Min-hyuk;Kim, Do-hyun;Lee, Daesung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.114-115
    • /
    • 2021
  • In this paper, we would like to introduce the basic concepts of quantum key distribution techniques so far and the problems that need to be technically advanced. Quantum key distribution technology is a technology that generates non-tapable encryption keys and distributes them to both sender and receiver using the characteristics of Quantum, which is the minimum unit of physical quantity that can no longer be split. We would like to introduce BB84 protocol, a representative protocol of this technology, to explore realistic difficulties and future challenges.

  • PDF

Dynamic Pfair Scheduling Using an Improved Reach Function (개선된 도달 함수를 이용한 동적 Pfair 스케줄링)

  • Park, Hyun-Sun;Kim, In-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.1
    • /
    • pp.165-170
    • /
    • 2011
  • The Pfair scheduling algorithm, which is an optimal algorithm in the hard real-time multiprocessor environments, is based on the fixed quantum size. Recently, several methods that can determine the optimal quantum dynamically are developed in the mode change environments. These methods are based on the reach function and in many cases, we have to do the sequential search to find the optimal quantum. In this paper, we propose a new scheduling method, based on the improved reach function, that can determine the optimal quantum more quickly.

Analysis of Invesion Layer Quantization Effects in NMOSFETs (NMOSFET의 반전층 양자 효과에 관한 연구)

  • Park, Ji-Seon;Sin, Hyeong-Sun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.9
    • /
    • pp.397-407
    • /
    • 2002
  • A new simulator which predicts the quantum effect in NMOSFET structure is developed. Using the self-consistent method by numerical method, this simulator accurately predicts the carrier distribution due to improved calculation precision of potential in the inversion layer. However, previous simulator uses analytical potential distribution or analytic function based fitting parameter Using the developed simulator, threshold voltage increment and gate capacitance reduction due to the quantum effect are analyzed in NMOS. Especially, as oxide thickness and channel doping dependence of quantum effect is analyzed, and the property analysis for the next generation device is carried out.

Polar Quantum Channel Coding for Symmetric Capacity Achieving (대칭용량 달성을 위한 극 퀀텀 채널 코딩)

  • Yang, Jae Seung;Park, Ju Yong;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.3-14
    • /
    • 2013
  • We demonstrate a fashion of quantum channel combining and splitting, called polar quantum channel coding, to generate a quantum bit (qubit) sequence that achieves the symmetric capacity for any given binary input discrete quantum channels. The present capacity is achievable subject to input of arbitrary qubits with equal probability. The polarizing quantum channels can be well-conditioned for quantum error-correction coding, which transmits partially quantum data through some channels at rate one with the symmetric capacity near one but at rate zero through others.

Study on Efficiency Droop in a-plane InGaN/GaN Light Emitting Diodes

  • Song, Hoo-Young;Suh, Joo-Young;Kim, Eun-Kyu;Baik, Kwang-Hyeon;Hwang, Sung-Min;Yun, Joo-Sun;Shim, Jong-In
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.145-145
    • /
    • 2011
  • Light-emitting diodes (LEDs) based on III-nitrides compound semiconductors have achieved a high performance device available for display and illumination sector. However, the conventional c-plane oriented LED structures are still showing several problems given by the quantum confined Stark effect (QCSE) due to the effects of strong piezoelectric and spontaneous polarizations. The QCSE results in spatial separation of electron and hole wavefunctions in quantum wells, thereby decreasing the internal quantum efficiency and red-shifting the emission wavelength. Due to demands for improvement of device performance, nonpolar structure has been attracting attentions, since the quantum wells grown on nonpolar templates are free from the QCSE. However, current device performance for nonpolar LEDs is still lower than those for conventional LEDs. In this study, we discuss the potential possibilities of nonpolar LEDs for commercialization. In this study, we characterized current-light output power relation of the a-plane InGaN/GaN LEDs structures with the variation of quantum well structures. On-wafer electroluminescence measurements were performed with short pulse (10 us) and low duty factor (1 %) conditions applied for eliminating thermal effects. The well and barrier widths, and indium compositions in quantum well structures were changed to analyze the efficiency droop phenomenon.

  • PDF

Breakthrough of Single-Quantum Signal in Double-Quantum Filtering and its Elimination

  • Jung, K.J.;Katz, J.;Hilal, S.K.;Cho, Z.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1993 no.05
    • /
    • pp.86-89
    • /
    • 1993
  • Breakthrough of single-quantum coherence is shown to occur even after application of a double-quantum filter with Bax's four-step phase-cycling scheme. The reason for this breakthrough is investigated and a method for its elimination is theoretically developed and experimentally demonstrated.

  • PDF