• Title/Summary/Keyword: Quantum chemical calculations

Search Result 92, Processing Time 0.031 seconds

Spin-orbit Effects on the Structure of Haloiodomethane Cations CH2XI+ (X=F, Cl, Br, and I)

  • Kim, Hyoseok;Park, Young Choon;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.3
    • /
    • pp.775-782
    • /
    • 2014
  • The importance of including spin-orbit interactions for the correct description of structures and vibrational frequencies of haloiodomethanes is demonstrated by density functional theory calculations with spin-orbit relativistic effective core potentials (SO-DFT). The vibrational frequencies and the molecular geometries obtained by SO-DFT calculations do not match with the experimental results as well as for other cations without significant relativistic effects. In this sense, the present data can be considered as a guideline in the development of the relativistic quantum chemical methods. The influence of spin-orbit effects on the bending frequency of the cation could well be recognized by comparing the experimental and calculated results for $CH_2BrI$ and $CH_2ClI$ cations. Spin-orbit effects on the geometries and vibrational frequencies of $CH_2XI$ (X=F, Cl, Br, and I) neutral are negligible except that C-I bond lengths of haloiodomethane neutral is slightly increased by the inclusion of spin-orbit effects. The $^2A^{\prime}$ and $^2A^{{\prime}{\prime}}$ states were found in the cations of haloiodomethanes and mix due to the spin-orbit interactions and generate two $^2E_{1/2}$ fine-structure states. The geometries of $CH_2XI^+$ (X=F and Cl) from SO-DFT calculations are roughly in the middle of two cation geometries from DFT calculations since two cation states of $CH_2XI$ (X=F and Cl) from DFT calculations are energetically close enough to mix two cation states. The geometries of $CH_2XI^+$ (X=Br and I) from SO-DFT calculations are close to that of the most stable cation from DFT calculations since two cation states of $CH_2XI$(X=Br and I) from DFT calculations are energetically well separated near the fine-structure state minimum.

Differential Thermal Analysis and Quantum Chemical Consideration for Catalytic Stability of Ion Exchanged Faujasite Type Zeolite 1. Ni2+-Faujasite계 (이온교환된 Faujasite형 제올라이트의 촉매적 안정성에 대한 시차열분석 및 양자화학적 고찰; 1. Ni2+-Faujasite계)

  • Kim, Myung-Chul;Kim, Jong-Taik
    • Applied Chemistry for Engineering
    • /
    • v.4 no.1
    • /
    • pp.75-81
    • /
    • 1993
  • The thermochemical stability of $Ni^{2+}-faujasite$ was studied by differential thermal analysis(DTA), thermal gravitational analysis(TGA), X-ray diffraction analysis(XRD) and quantum chemical calculations. Dehydration of $Ni^{2+}-faujasite$ was observed at 373-773K. A CNDO/2 calculations have been applied on cluster models for the representative T sites in faujasite to get total energy and wiberg bond orders. It has proved that the decrease of zeolitic crystallinity is directly related to the weakening of Al-O bonds in framework.

  • PDF

Quantitative Structure-Activity Relationships of Salicylic Acid Derivatives by Quantum Chemical Calculations (양자화학적 계산에 의한 살리씰산유도체의 정량적 구조-활성 상관관계)

  • Rhee, Jong-Dal
    • YAKHAK HOEJI
    • /
    • v.32 no.1
    • /
    • pp.80-85
    • /
    • 1988
  • QSAR of Salicylic acid derivatives, as anti-inflammatory agent, classified into Group I (not-having-5-phenyl ones) and Group II (having-5-phenyl ones) were investigated by quantum chemical calculations. The results are below: not significant statistically for both of Group I and Group II, but significant for each Group. $potency=-8.46X_{5}+1.639\;n=5\;r=0.77\;se=0.31\;for\;Group\;I.$ $({\pm}4.05)\;({\pm}0.5)$ where $X_5$ means charge of carbon atom bonded to hydroxyl radical. $potency=0.16X_{19}+7427.38HO-6629.85X_{15}+4977.40X_{10}+351.51X_5+3378.84$ $({\pm}0.17)\;({\pm}10.18)\;({\pm}11.70)\;({\pm}33.78)\;({\pm}4.41)\;({\pm}13.13)$ n=7 r=0.99 se=0.019 for Group II. where $X_{19}$ and $X_{15}$ stand for charges of the para carbon and the first carbon atoms in phenyl radical, respectively and $X_{10}$, charge of carboxylic carbon atom, HO, HOMO energy. It seems to be possible to qualitatively predict potency of drug by Pearson's HSAB theory. It means that drug should possess low LUMO energy and high HOMO energy.

  • PDF

Two-Photon Absorption Cross Sections of Dithienothiophene-Based Molecules

  • Chung, Myung-Ae;Lee, Kwang-Sup;Jung, Sang-Don
    • ETRI Journal
    • /
    • v.24 no.3
    • /
    • pp.221-225
    • /
    • 2002
  • We performed nonlinear transmission measurements and quantum-chemical calculations on dithienothiophene(DTT)-based molecules to gain insight into the effect of acceptor and donor groups on two-photon absorption(TPA) properties. The TPA intensity showed dispersion characteristics of the single-photon absorption spectrum. When the molecules included an asymmetric donor-acceptor pair, the single- and two-photon absorption maximum wavelengths were red-shifted more than when the molecules had a symmetric donor-donor structure. We interpreted this result as indicating that the $S_2$ state plays the dominating role in the absorption process of molecules with a symmetric structure. The experimental TPA ${\delta}$ values at the absorption peak wavelength showed a dependence on the structural variations. We found the self-consistent force-field theory and Hartree-Fock Hamiltonian with single configuration interaction formalism to be valid for evaluating TPA ${\delta}$. Although the quantum-chemical calculations slightly underestimated the experimental ${\delta}$ values obtained from nonlinear trans -mission measurements, they reasonably predicted the dependence of the ${\delta}$ value on the structural variations. We confirmed the role of molecular symmetry by observing that donor-donor substituted structure gave the highest experimental and theoretical TPA ${\delta}$ values and that the donor-acceptor substituted structure showed a greater red-shift in the TPA absorption maximum wavelength. Overall, the theoretical ${\delta}$ values of DTT-based molecules were in the order of $10^{-46}\;cm^4{\cdot}s{\cdot}photon^{-1}$ and are higher than that of AF-50 by nearly two orders of magnitude.

  • PDF

Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

  • Park, Kichul;Sung, Nack Kyun;Cho, Art E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.545-548
    • /
    • 2013
  • It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding $r^2$ = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.

Quantum Chemical Designing of Novel Organic Non-Linear Optical Compounds

  • Mahmood, Asif;Abdullah, Muhammad Imran;Nazar, Muhammad Faizan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1391-1396
    • /
    • 2014
  • In the present study, ten metal free non-linear optical (NLO) compounds have been designed. These compounds have designed by structural modification of (2-cyano-5-(4-(phenyl(4-vinylphenyl)amino)phenyl) penta-2,4-dienoic acid (TC4). Density functional theory was used for structure optimization and determination of photo-physical properties. These compounds contain triphenylamine as electron-donor and cyanoacrylic acid as acceptor. Five ${\pi}$-spacers are used to connect the donor and acceptor. Two auxiliary donors are also used to assist the donor. Results of this study indicate that stronger electron-donating auxiliary groups and longer ${\pi}$-conjugation enhance NLO response. Major absorption peaks of all systems were in the visible region. These absorption peaks are associated with the ${\pi}-{\pi}^*$ transitions of the entire molecule. From calculations it is clear that all system will be good NLO material. The present calculations will provide new ways for experimentalists to synthesize high-performance NLO material.

An ab initio Study on the Molecular Elimination Reactions of Methacrylonitrile

  • Oh, Chang-Young;Park, Tae-Jun;Kim, Hong-Lae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.8
    • /
    • pp.1177-1184
    • /
    • 2005
  • Ab initio quantum chemical molecular orbital calculations have been performed for the unimolecular decomposition of methacrylonitrile ($CH_3C(CN)=CH_2$), especially for HCN and $H_2$ molecular elimination channels. Structures and energies of the reactants, products, and relevant species along the individual reaction pathways were determined by MP2 gradient optimization and MP4 single point energy calculations. Direct four-center elimination of HCN and three-center elimination of H2 channels were identified. In addition, H or CN migration followed by HCN or H2 elimination channels via the methylcyanoethylidene intermediate was also identified. Unlike the case of crotonitrile previously studied, in which the dominant decomposition process was the direct three-center elimination of HCN, the most important reaction pathway should be the direct threecenter elimination of $H_2$ in the case of methacrylonitrile.

Loss of HCN from the Pyrimidine Molecular Ion: A Computational Study

  • Yim, Min Kyoung;Jung, Sun Hwa;Kim, Myung Soo;Choe, Joong Chul
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.12
    • /
    • pp.4098-4102
    • /
    • 2012
  • The potential energy surface (PES) for the loss of HCN from the pyrimidine molecular ion has been explored using quantum chemical calculations. Possible reaction pathways to form five $C_3H_3N^{+{\bullet}}$ isomers have been obtained with Gaussian 4 model calculations. The rate constant for the HCN loss and the product branching ratio have been calculated using the Rice-Ramsperger-Kassel-Marcus theory on the basis of the obtained PES. The resultant rate constant agrees with the previous experimental result. By a kinetic analysis, it is proposed that the formation of $CH=CHC{\equiv}NH^{+{\bullet}}$ is favored near the dissociation threshold, while the formation of $CH=CHN{\equiv}CH^{+{\bullet}}$ is favored at high energies.

Semiempirical Molecular Orbital Calculations of the Substituent Effects on Acylations of 3-Cephem Analogues

  • Chang Moon-Ho;Koh Hun-Yeong;Lee Jung-Chull;Lee Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.453-455
    • /
    • 1994
  • Semiempirical MO calculations are applied to estimate the substituent effects on acylations of the nonfused N-vinyl-2-amino $\beta-lactams$ having frameworks analogous to 3-cephems. The stabilization energy for the reaction intermediate of the nucleophilic attack by the hydroxide ion is selected as the reactivity index and calculated by AM1 and PM3 methods for the model $\beta-lactams$ with substituents at the C1 and N-vinyl terminal positions. The reactivities are larger for -SH connected to the C1 and strong $\pi-acceptors$ at the N-vinyl terminal implying the large reactivity for known active cephalosporins. Quantum chemical calculation of stabilization energy could be useful in correlating antibiotic activities of many compounds obtained as derivatives of a lead compound.