Browse > Article
http://dx.doi.org/10.5012/bkcs.2014.35.3.775

Spin-orbit Effects on the Structure of Haloiodomethane Cations CH2XI+ (X=F, Cl, Br, and I)  

Kim, Hyoseok (Department of Chemistry KAIST)
Park, Young Choon (Department of Chemistry KAIST)
Lee, Yoon Sup (Department of Chemistry KAIST)
Publication Information
Abstract
The importance of including spin-orbit interactions for the correct description of structures and vibrational frequencies of haloiodomethanes is demonstrated by density functional theory calculations with spin-orbit relativistic effective core potentials (SO-DFT). The vibrational frequencies and the molecular geometries obtained by SO-DFT calculations do not match with the experimental results as well as for other cations without significant relativistic effects. In this sense, the present data can be considered as a guideline in the development of the relativistic quantum chemical methods. The influence of spin-orbit effects on the bending frequency of the cation could well be recognized by comparing the experimental and calculated results for $CH_2BrI$ and $CH_2ClI$ cations. Spin-orbit effects on the geometries and vibrational frequencies of $CH_2XI$ (X=F, Cl, Br, and I) neutral are negligible except that C-I bond lengths of haloiodomethane neutral is slightly increased by the inclusion of spin-orbit effects. The $^2A^{\prime}$ and $^2A^{{\prime}{\prime}}$ states were found in the cations of haloiodomethanes and mix due to the spin-orbit interactions and generate two $^2E_{1/2}$ fine-structure states. The geometries of $CH_2XI^+$ (X=F and Cl) from SO-DFT calculations are roughly in the middle of two cation geometries from DFT calculations since two cation states of $CH_2XI$ (X=F and Cl) from DFT calculations are energetically close enough to mix two cation states. The geometries of $CH_2XI^+$ (X=Br and I) from SO-DFT calculations are close to that of the most stable cation from DFT calculations since two cation states of $CH_2XI$(X=Br and I) from DFT calculations are energetically well separated near the fine-structure state minimum.
Keywords
Haloiodomethane; Haloiodomethane cation; Spin-orbit effect; Density functional theory;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Lee, Y. S.; McLean, A. D. J. Chem. Phys. 1982, 76, 735.   DOI
2 Lee, H. S.; Cho, W. K.; Choi, Y. J.; Lee, Y. S. Chem. Phys. 2005, 311, 121.   DOI
3 Fossgaard, O.; Gropen, O.; Valero, M. C.; Saue, T. J. Chem. Phys. 2003, 118, 10418.   DOI
4 Han, Y.-K.; Bae, C.; Son, S.-K.; Lee, Y. S. J. Chem. Phys. 2000, 112, 2684.   DOI   ScienceOn
5 Choi, Y. J.; Lee, Y. S. J. Chem. Phys. 2003, 119, 2014.   DOI
6 Lee, M.; Kim, H.; Lee, Y. S.; Kim, M. S. J. Chem. Phys. 2005, 122, 244319.   DOI
7 Kendall, R. A.; Apra, E.; Bernholdt, D. E.; Bylaska, E. J.; Dupuis, M.; Fann, G. I.; Harrison, R. J.; Ju, J.; Nichols, J. A.; Nieplocha, J.; Straatsma, T. P.; Windus, T. L.; Wong, A. T. Computer Phys. Comm. 2000, 128, 260.   DOI
8 Lee, M.; Kim, H.; Lee, Y. S.; Kim, M. S. Angew. Chem. Int. Ed. 2005, 44, 2929.   DOI
9 Lee, M.; Kim, H.; Lee, Y. S.; Kim, M. S. J. Chem. Phys. 2005, 123, 024310.   DOI
10 Bilde, M.; Wallington, T. J.; Ferronato, C.; Orlando, J. J.; Tyndall, G. S.; Estupinan, E.; Haberkorn, S. J. Phys. Chem. A 1998, 102, 1976.   DOI   ScienceOn
11 Vogt, R.; Sander, R.; Glasow, R. V.; Crutzen, P. J. J. Atmos. Chem. 1999, 32, 375.   DOI
12 Finalayson-Pitts, B. J.; Pitts Jr., J. N. Chemistry of the Upper and Lower Atmosphere; Academic: San Diego, 2000.
13 Alicke, B.; Hebestreit, K.; Stutz, J.; Platt, U. Nature 1999, 397, 572.
14 Kwok, W. M.; Phillips, D. L. Chem. Phys. Lett. 1995, 235, 260.   DOI
15 Marshall, P.; Srinivas, G. N.; Schwartz, M. J. Phys. Chem. A 2005, 109, 6371.   DOI
16 Duschek, F.; Schmitt, M.; Vogt, P.; Materny, A.; Kiefer, W. J. Raman. Spectrosc. 1997, 28, 445.   DOI
17 Sablinskas, V.; Klaeboe, P.; Nielsen, C. J.; Sulzle, D. Analyst 1992, 117, 365.   DOI
18 Pyykko, P. Adv. Quantum Chem. 1978, 11, 353.   DOI
19 Lee, Y. S. In Relativistic Electronic Structure Theory, Part 2: Applications; Schwerdtfeger, P., Ed.; Elsevier, B. V.: Amsterdam, The Netherlands, 2004; Vol. 14.
20 Christiansen, P. A.; Ermler, W. C.; Pitzer, K. S. Annu. Rev. Phys. Chem. 1985, 36, 407.   DOI
21 Arashkevich, D. G.; Sharpiro, M.; Brumer, P. J. Chem. Phys. 2002, 116, 5584.   DOI
22 Liu, K.; Zhao, H.; Wang, C.; Zhang, A.; Ma, S.; Li, Z. J. Chem. Phys. 2005, 122, 044310.   DOI
23 Solomon, S.; Garcia, R. R.; Ravishankara, A. R. J. Geophys. Res. 1994, 99, 20491.   DOI
24 Man, S.-Q.; Kwok, W. M.; Johnson, A. E.; Phillips, D. L. J. Chem. Phys. 1996, 105, 5842.   DOI
25 Eland, J. H. Photoelectron Spectroscopy; Butterworth: Southhampton, 1984.
26 Novak, I.; Benson, J. M.; Potts, A. W. Chem. Phys. 1986, 107, 129.   DOI
27 Ford, M. S.; Tong, X.; Dessent, C. E. H.; Muller-Dethlefs, K. J. Chem. Phys. 2003, 119, 12914.   DOI
28 Seiler, R.; Hollenstein, U.; Softley, T. P.; Merkt, F. J. Chem. Phys. 2003, 118, 10024.   DOI
29 Georgiev, S.; Neusser, H. J.; Chakraborty, T. J. Chem. Phys. 2004, 120, 8015.   DOI
30 Lee, Y. S.; Ermler, W. C.; Pitzer, K. S. J. Chem. Phys. 1977, 67, 5861.   DOI
31 Ermler, W. C.; Lee, Y. S.; Christiansen, P. A.; Pitzer, K. S. Chem. Phys. Lett. 1981, 81, 70.   DOI
32 Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.   DOI   ScienceOn
33 Becke, A. D. J. Chem. Phys. 1993, 98, 5648.   DOI   ScienceOn
34 Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785.   DOI   ScienceOn
35 Ernzerhof, M.; Scuseria, G. E. J. Chem. Phys. 1999, 110, 5029.   DOI   ScienceOn
36 Slater, J. C. Quantum Theory for Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids; McGraw-Hill: New York, 1974.
37 LaJohn, L. A.; Christiansen, P. A.; Ross, R. B.; Atashroo, T.; Ermler, W. C. J. Chem. Phys. 1987, 87, 2812.   DOI
38 Adamo, C.; Barone, V. J. Chem. Phys. 1998, 110, 6158.
39 Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.   DOI
40 Becke, A. D. J. Chem. Phys. 1988, 88, 3098.
41 Perdew, J. P. Phys. Rev. B 1986, 33, 8822.   DOI   ScienceOn
42 Zhao, Y.; Truhlar, D. G. J. Phys. Chem. A 2004, 108, 6908.   DOI   ScienceOn
43 Kim, J.; Ihee, H.; Lee, Y. S. Theor. Chem. Acc. 2011, 129, 343.   DOI
44 Ohkoshi, I.; Niide, Y.; Takano, M. J. Mol. Spectrosc. 1987, 124, 118.   DOI
45 Kudchadker, S. A.; Kudchadker, A. P. J. Phys. Chem. Ref. Data 1975, 4, 457.   DOI
46 Liu, Y. J.; De Vico, L.; Lindh, R.; Fang, W. H. Chemphyschem. 2007, 8, 890.   DOI
47 Zheng, X.; Phillips, D. L. J. Chem. Phys. 2000, 113, 3194.   DOI
48 Odelius, M.; Dai, M.; Davidsson, J.; Tarnovsky, A. N. J. Chem. Phys. 2004, 121, 2208.   DOI
49 Glukhovtsec, M. N.; Bach, R. D. Chem. Phys. Lett. 1997, 269, 145.   DOI
50 Straatsma, T. P.; Apra, E.; Windus, T. L.; Dupuis, M.; Bylaska, E. J.; Jong, W. d.; Hirata, S.; Smith, D. M. A.; Hackler, M. T.; Pollack, L.; Harrison, R. J.; Nieplocha, J.; Tipparaju, V.; Krishnan, M.; Brown, E.; Cisneros, G.; Fann, G. I.; Fruchtl, H.; Garza, J.; Hirao, K.; Kendall, R.; Nichols, J. A.; Tsemekhman, K.; Valiev, M.; Wolinski, K.; Anchell, J.; Bernholdt, D.; Borowski, P.; Clark, T.; Clerc, D.; Dachsel, H.; Deegan, M.; Dyall, K.; Elwood, D.; Glendening, E.; Gutowski, M.; Hess, A.; Jaffe, J.; Johnson, B.; Ju, J.; Kobayashi, R.; Kutteh, R.; Lin, Z.; Littlefield, R.; Long, X.; Meng, B.; Nakajima, T.; Niu, S.; Rosing, M.; Sandrone, G.; Stave, M.; Taylor, H.; Thomas, G.; Lenthe, J. V.; Wong, A.; Zhang, Z. Pacific Northwest National Laboratory: Richland, Washington 99352-0999, USA, 2003.
51 Hurley, M. M.; Pacios, L. F.; Christiansen, P. A.; Ross, R. B.; Ermler, W. C. J. Chem. Phys. 1986, 84, 6840.   DOI
52 Liu, Y.-J.; Ajitha, D.; Krogh, J. W.; Alexander, K.; Tarnovsky, N.; Lindh, R. Chemphyschem 2006, 7, 955.   DOI