Browse > Article
http://dx.doi.org/10.5012/bkcs.2013.34.2.545

Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series  

Park, Kichul (Department of Bioinformatics, Korea University)
Sung, Nack Kyun (Department of Bioinformatics, Korea University)
Cho, Art E. (Department of Bioinformatics, Korea University)
Publication Information
Abstract
It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding $r^2$ = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.
Keywords
Docking; Binding affinity; QPLD; Glide; Neuraminidase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cho, A. E.; Guallar, V.; Berne, B. J.; Friesner, R. Journal of Computational Chemistry 2005, 26, 915.   DOI   ScienceOn
2 Cho, A. E.; Rinaldo, D. Journal of Computational Chemistry 2009, 30, 2609.   DOI   ScienceOn
3 Claussen, H.; Buning, C.; Rarey, M.; Lengauer, T. Journal of Molecular Biology 2001, 308, 377.   DOI   ScienceOn
4 Ewing, T. J. A.; Makino, S.; Skillman, A. G.; Kuntz, I. D. Journal of Computer-Aided Molecular Design 2001, 15, 411.   DOI   ScienceOn
5 Chung, J. Y.; Hah, J. M.; Cho, A. E. J. Chem. Inf. Model 2009, 49, 2382.   DOI   ScienceOn
6 Bortolato, A.; Moro, S. J. Chem. Inf. Model 2007, 47, 572.   DOI   ScienceOn
7 Tounge, B. A.; Reynolds, C. H. J. Med. Chem. 2003, 46, 2074.   DOI   ScienceOn
8 Lin, H.; Truhlar, D. G. Theoretical Chemistry Accounts 2007, 117, 185.   DOI
9 Murphy, R. B.; Philipp, D. M.; Friesner, R. A. Journal of Computational Chemistry 2000, 21, 1442.   DOI
10 Murphy, R. B.; Philipp, D. M.; Friesner, R. A. Chemical Physics Letters 2000, 321, 113.   DOI   ScienceOn
11 Varghese, J. N.; Laver, W. G.; Colman, P. M. Nature 1983, 303, 35.   DOI   ScienceOn
12 Colman, P. M.; Varghese, J. N.; Laver, W. G. Nature 1983, 303, 41.   DOI   ScienceOn
13 Burch, J.; Paulden, M.; Conti, S.; Stock, C.; Corbett, M.; Welton, N. J.; Ades, A. E.; Sutton, A.; Cooper, N.; Elliot, A. J.; Nicholson, K.; Duffy, S.; McKenna, C.; Stewart, L.; Westwood, M.; Palmer, S. Health Technol. Assess 2009, 13, 1.
14 Lew, W.; Wu, H.; Chen, X.; Graves, B. J.; Escarpe, P. A.; MacArthur, H. L.; Mendel, D. B.; Kim, C. U. Bioorg. Med. Chem. Lett. 2000, 10, 1257.   DOI   ScienceOn
15 Lew, W.; Chen, X.; Kim, C. U. Curr. Med. Chem. 2000, 7, 663.   DOI   ScienceOn
16 von Itzstein, M.; Wu, W. Y.; Kok, G. B.; Pegg, M. S.; Dyason, J. C.; Jin, B.; Van Phan, T.; Smythe, M. L.; White, H. F.; Oliver, S. W. et al. Nature 1993, 363, 418.   DOI   ScienceOn
17 Holzer, C. T.; von Itzstein, M.; Jin, B.; Pegg, M. S.; Stewart, W. P.; Wu, W. Y. Glycoconj. J. 1993, 10, 40.   DOI   ScienceOn
18 Berman, H. M.; Bhat, T. N.; Bourne, P. E.; Feng, Z.; Gilliland, G.; Weissig, H.; Westbrook, J. Nat. Struct. Biol. 2000, 7 Suppl, 957.
19 Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T. N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. Nucleic. Acids Res. 2000, 28, 235.   DOI   ScienceOn
20 Armstrong, K. A.; Tidor, B.; Cheng, A. C. J. Med. Chem. 2006, 49, 2470.   DOI   ScienceOn
21 Repasky, M. P.; Murphy, R. B.; Banks, J. L.; Greenwood, J. R.; Tubert-Brohman, I.; Bhat, S.; Friesner, R. A. J. Comput. Aided Mol. Des. 2012, 26, 787.   DOI
22 Friesner, R. A.; Murphy, R. B.; Repasky, M. P.; Frye, L. L.; Greenwood, J. R.; Halgren, T. A.; Sanschagrin, P. C.; Mainz, D. T. Journal of Medicinal Chemistry 2006, 49, 6177.   DOI   ScienceOn
23 Taylor, N. R.; Cleasby, A.; Singh, O.; Skarzynski, T.; Wonacott, A. J.; Smith, P. W.; Sollis, S. L.; Howes, P. D.; Cherry, P. C.; Bethell, R.; Colman, P.; Varghese, J. J. Med. Chem. 1998, 41, 798.   DOI   ScienceOn
24 Smith, B. J.; Colman, P. M.; Von Itzstein, M.; Danylec, B.; Varghese, J. N. Protein Sci. 2001, 10, 689.   DOI   ScienceOn
25 Smith, B. J.; McKimm-Breshkin, J. L.; McDonald, M.; Fernley, R. T.; Varghese, J. N.; Colman, P. M. J. Med. Chem. 2002, 45, 2207.   DOI   ScienceOn
26 Varghese, J. N.; Epa, V. C.; Colman, P. M. Protein Sci. 1995, 4, 1081.   DOI   ScienceOn
27 Varghese, J. N.; Colman, P. M.; van Donkelaar, A.; Blick, T. J.; Sahasrabudhe, A.; McKimm-Breschkin, J. L. Proc. Natl. Acad Sci. USA 1997, 94, 11808.   DOI
28 Varghese, J. N.; Smith, P. W.; Sollis, S. L.; Blick, T. J.; Sahasrabudhe, A.; McKimm-Breschkin, J. L.; Colman, P. M. Structure 1998, 6, 735.   DOI   ScienceOn
29 Young, T.; Abel, R.; Kim, B.; Berne, B. J.; Friesner, R. A. Proc. Natl. Acad Sci. USA 2007, 104, 808.   DOI   ScienceOn
30 Stoll, V.; Stewart, K. D.; Maring, C. J.; Muchmore, S.; Giranda, V.; Gu, Y. G.; Wang, G.; Chen, Y.; Sun, M.; Zhao, C.; Kennedy, A. L.; Madigan, D. L.; Xu, Y.; Saldivar, A.; Kati, W.; Laver, G.; Sowin, T.; Sham, H. L.; Greer, J.; Kempf, D. Biochemistry 2003, 42, 718.   DOI   ScienceOn
31 Cho, A. E.; Chung, J. Y.; Kim, M.; Park, K. Quantum Mechanical Scoring for Protein Docking; Journal of Chemical Physics 2009, 131(13), 134108.