• Title/Summary/Keyword: Quantum chemical calculations

Search Result 92, Processing Time 0.02 seconds

Studies of the Monodipole-macrodipole Interactions within α-Helices Using the Point-charge Systems for Alanine

  • Park, Chang-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.824-828
    • /
    • 2003
  • Our previous quantum mechanical calculations using polyalanine model systems showed that the monodipolemacrodipoleinteractions selectively stabilize α-helices and make it possible for α-helices to be formed inhydrophobic environment where the solvent effect is not available. The monodipole-macrodipole interactionsin α-helices were studied molecular mechanically using various point-charge systems available. The resultsshow that all the point-charge systems used in the calculations produce the monodipole-macrodipoleinteractions up to about 60% compared to the results of the quantum mechanical calculations. The results ofmolecular mechanical calculations are explained and discussed compared to the results of the quantummechanical calculations.

Quantum Chemical Calculations of Surface Hydroxyl Groups as Acid Site (Faujasite 표면 수산기의 산성에 관한 양자화학적 해석)

  • Kim, Myung-Chul
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.361-363
    • /
    • 1998
  • The CNDO/2 calculations have been applied on cluster models for the representative hydroxyls on faujasite surface to get total energies, dipole moments, Wiberg bond orders and formal charge densities. Quantum chemical calculations indicate that the acid strength of surface hydroxyls of faujasite depends on the geometry of hydroxyls and the Si/Al ratios of framework. The $Br{\ddot{o}}nsted$ acid strength of bridging hydroxyl is higher than that of isolated hydroxyls. The stabilities of cluster models increased with increase of the Si/Al ratios.

  • PDF

Coriolis Coupling Influence on the H+LiH Reaction

  • Zhai, Hongsheng;Li, Wenliang;Liu, Yufang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.1
    • /
    • pp.151-157
    • /
    • 2014
  • We have reported the reaction probability, integral reaction cross section, and rate constant for the title system calculated with the aid of a time-dependent wave packet approach. The ab initio potential energy surface (PES) of Prudente et al. (Chem. Phys. Lett. 2009, 474, 18) is employed for the purpose. The calculations are carried out over the collision energy range of 0.05-1.4 eV for the two reaction channels of H + LiH ${\rightarrow}$ Li + $H_2$ and $H_b$ + $LiH_a$ ${\rightarrow}$ $LiH_b$ + $H_a$. The Coriolis coupling (CC) effect are taken into account. The importance of including the Coriolis coupling quantum scattering calculations are revealed by the comparison between the Coriolis coupling and the centrifugal sudden (CS) approximation calculations.

A Wavepacket Study on Translational Energy Distributions of the Photo-stimulated Desorbed Xe from an Oxidized Si(001) Surface

  • Abe, Atsutoshi;Yamashita, Koichi
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.691-694
    • /
    • 2003
  • We report a quantum wavepacket study on the characteristic bimodal translational energy distribution of photostimulated desorbed Xe from an oxidized silicon (001) surface observed by Watanabe and Matsumoto, Faraday Discuss. 117 (2000) 203. We have simulated the theoretical translational energy distributions based on wavepacket calculations with a sudden transition and averaging model to reproduce the experiment. We discuss the desorption mechanism and suggest a very strong position dependence of the deexcitation processes for Xe/oxidized Si(001).

Studies on the Different Reaction Pathways between 3-Acetyl-5-benzoyl-6-methyl-2-phenyl-4H-pyran-4-one and Alkylamines

  • Genc, Hasan;Tan, Meltem;Gumus, Selcuk;Menges, Nurettin;Bildirici, Ishak;Sener, Ahmet
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2633-2636
    • /
    • 2010
  • 3-Acetyl-5-benzoyl-6-methyl-2-phenyl-4H-pyran-4-one has been subjected to condensation with a series of primary amines (ethylamine - octylamine) to clarify the proposed mechanism in our previous study. The reactions of the shorter amines of the series (ethylamine - butylamine) yielded unsymmetric pyridinone products, whereas the other amines (pentylamine - octylamine) yielded symmetrical pyridinones. The starting material and the products as well as the intermediates have been subjected to theoretical analysis by quantum chemical calculations at B3LYP/6-31G(d,p) level, which provided supporting data for the experimental findings.

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

Application of Multichannel Quantum Defect Theory to the Triatomic van der Waals Predissociation Process

  • Chun-Woo Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.228-238
    • /
    • 1991
  • Generalized multichannel quantum defect theory [C. H. Greene et al. Phys. Rev., A26, 2441 (1982)] is implemented to the vibrational predissociation of triatomic van der Waals molecules. As this is the first one of such an application, the dependences of the quantum defect parameters on energy and radius are examined carefully. Calculation shows that, in the physically important region, quantum defect parameters remain smoothly varying functions of energy for this system as in atomic applications, thus allowing us very coarse energy mesh calculations for the photodissociation spectra. The choice of adiabatic or diabatic potentials as reference potentials for the calculation of quantum defect parameters as done by Mies and Julienne [J. Chem. Phys., 80, 2526 (1984)] can not be used for this system. Physically motivated reference potentials that may be generally applicable to all kinds of systems are utilized instead. In principle, implementation can be done to any other predissociation processes with the same method.

Quantum-Chemical Studies on Cis-Trans Isomerization of Ac-Pro-NHMe and Its $C^\delta$-Methylated Derivatives

  • Jhon, Jong-Suk;Kang, Young-Kee
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.38-38
    • /
    • 1999
  • Calculations on conformational free energies of Ac-Pro-NHMe and its $C^{\delta}$-methylated derivatives have been carried out with the higher levels of quantum-chemical methods to figure out the cis-trans isomerization of the imide bond of proline and $C^{\delta}$-methylated prolines in the gas phase and in solution.(omitted)hase and in solution.(omitted)

  • PDF

Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift (라만 분광분석과 NMR 화학 이동 양자 계산을 이용한 엔스테타이트에 용해된 탄소의 원자 환경 연구)

  • Kim, Eun-Jeong;Lee, Sung-Keun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.289-300
    • /
    • 2011
  • Atomistic origins of carbon solubility into silicates are essential to understand the effect of carbon on the properties of silicates and evolution of the Earth system through igneous and volcanic processes. Here, we investigate the atomic structure and NMR properties of dissolved carbon in enstatite using Raman spectroscopy and quantum chemical calculations. Raman spectrum for enstatite synthesized with 2.4. wt% of amorphous carbon at 1.5 GPa and $1,400^{\circ}C$ shows vibrational modes of enstatite, but does not show any vibrational modes of $CO_2$ or ${CO_3}^{2-}$. The result indicates low solubility of carbon into enstatite at a given pressure and temperature conditions. Because $^{13}C$ NMR chemical shift is sensitive to local atomic structure around carbon and we calculated $^{13}C$ NMR chemical shielding tensors for C substituted enstatite cluster as well as molecular $CO_2$ using quantum chemical calculations to give insights into $^{13}C$ NMR chemical shifts of carbon in enstatite. The result shows that $^{13}C$ NMR chemical shift of $CO_2$ is 125 ppm, consistent with previous studies. Calculated $^{13}C$ NMR chemical shift of C is ~254 ppm. The current calculation will alllow us to assign potential $^{13}C$ NMR spectra for the enstatite dissolved with carbon and thus may be useful in exploring the atomic environment of carbon.

Comparison of Structural Types of L-Alanine Pentamer by Quantum Chemical Calculation

  • Kobayashi, Minoru;Sim, Jae Ho
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.425-430
    • /
    • 2022
  • L-alanine (LA, as an amino acid residue) pentamer model was used to investigate changes in the dihedral angle, intramolecular hydrogen bonding and formation energies during structural optimization. LA pentamers having four conformation types [𝛽: 𝜑/𝜓=t-/t+, 𝛼: 𝜑/𝜓=g-/g-, PPII: 𝜑/𝜓=g-/t+ and P-like: 𝜑/𝜓= g-/g+] were carried out by quantum chemical calculations (QCC) [B3LYP/6-31G(d,p)]. In LA, 𝛽, 𝛼, and P-like types did not change by optimization, having an intra-molecular hydrogen bond: NH⋯OC (H-bond), and PPII types in the absence of H-bond were transformed into P-like at the designated 𝜓 of 140°, and to 𝛽 at that of 160° or 175°. P-like and 𝛼 were about 0.5 kcal/mol/mu more stable than 𝛽. In order to understand the processes of the transformations, the changes of 𝜑/𝜓, distances of NH-OC (dNH/CO) and formation energies (𝜟E, kcal/mol/mu) were examined.