Browse > Article
http://dx.doi.org/10.9727/jmsk.2011.24.4.289

Atomic Structure of Dissolved Carbon in Enstatite: Raman Spectroscopy and Quantum Chemical Calculations of NMR Chemical Shift  

Kim, Eun-Jeong (School of Earth and Environmental Sciences, Seoul National University)
Lee, Sung-Keun (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Journal of the Mineralogical Society of Korea / v.24, no.4, 2011 , pp. 289-300 More about this Journal
Abstract
Atomistic origins of carbon solubility into silicates are essential to understand the effect of carbon on the properties of silicates and evolution of the Earth system through igneous and volcanic processes. Here, we investigate the atomic structure and NMR properties of dissolved carbon in enstatite using Raman spectroscopy and quantum chemical calculations. Raman spectrum for enstatite synthesized with 2.4. wt% of amorphous carbon at 1.5 GPa and $1,400^{\circ}C$ shows vibrational modes of enstatite, but does not show any vibrational modes of $CO_2$ or ${CO_3}^{2-}$. The result indicates low solubility of carbon into enstatite at a given pressure and temperature conditions. Because $^{13}C$ NMR chemical shift is sensitive to local atomic structure around carbon and we calculated $^{13}C$ NMR chemical shielding tensors for C substituted enstatite cluster as well as molecular $CO_2$ using quantum chemical calculations to give insights into $^{13}C$ NMR chemical shifts of carbon in enstatite. The result shows that $^{13}C$ NMR chemical shift of $CO_2$ is 125 ppm, consistent with previous studies. Calculated $^{13}C$ NMR chemical shift of C is ~254 ppm. The current calculation will alllow us to assign potential $^{13}C$ NMR spectra for the enstatite dissolved with carbon and thus may be useful in exploring the atomic environment of carbon.
Keywords
Carbon dioxide; $MgSiO_3$; NMR chemical shift; quantum chemical caculations; solubility of carbon into earth materials;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Zhang, Y. and Zindler, A. (1993) Distribution and evolution of carbon and nitrogen in Earth. Earth Planet. Sci. Lett., 117, 331-345.   DOI   ScienceOn
2 Zucker, R. and Shim, S.H. (2009) In situ Raman spectroscopy of $MgSiO_{3}$ enstatite up to 1550 K. Am. Mineral., 94, 1638-1646.   DOI   ScienceOn
3 Mysen, B.O., Fogel, M.L., Morrill, P.L., and Cody, G. D. (2009) Solution behavior of reduced C-OH volatiles in silicate melts at high pressure and temperature. Geochim. Cosmochim. Acta, 73, 1696-1710.   DOI   ScienceOn
4 Mysen, B.O., Arculus, R.J., and Eggler, D.H. (1975) Solubility of carbon-dioxide in melts of andesite, tholeiite, and olivine nephelinite composition to 30 kbar pressure. Contrib. Mineral. Petrol., 53, 227-239.   DOI   ScienceOn
5 Nowak, M., Schree, D., and Spickenbom, K. (2004) Argon and $CO_{2}$ on the race track in silicate melts: A tool for the development of a CO, speciation and diffusion model. Geochim. Cosmochim. Acta, 68, 5127-5138.   DOI   ScienceOn
6 Pawley, A.R., Holloway, J.R., and McMillan, P.F. (1992) The effect of oxygen fugacity on the solubility of carbon oxygen fluids in basaltic melt. Earth Planet. Sci. Lett., 110, 213-225.   DOI   ScienceOn
7 Pearce, M.L. (1964) Solubility of carbon dioxide and variation of oxygen ion activity in soda-silicate melts. J. Am. Ceram. Soc., 47, 342-347.   DOI
8 Rockafellow, E.M., Fang, X., Trewyn, B.G., Schmidt-Rohr, K., and Jenks, W.S. (2009) Solid-state $^{13}C$ NMR characterization of carbon-modified $TiO_{2}$. Chem. Mater., 21, 1187-1197.   DOI   ScienceOn
9 Richet, P. and Bottinga, Y. (1984) Anorthite, andesine, wollastonite, diopside, cordierite, and pyrope: Thermodynamics of melting, glass transitions, and properties of the amorphous phases. Earth Planet. Sci. Lett., 67, 415-432.   DOI   ScienceOn
10 Shcheka, S.S., Wiendenbeck, M., Frost, D.J., and Keppler, H. (2006) Carbon solubility in mantle minerals. Earth Planet. Sci. Lett., 245, 730-742.   DOI   ScienceOn
11 Stolper, E., Fine, G., Johnson, T., and Newman, S. (1987) Solubility of carbon dioxide in albitic melt. Am. Mineral., 72, 1071-1085.
12 Tossell, J.A. (1995) Calculation of the C-13 NMR shieldings of the $CO_{2}$ complexes of aluminosilicates. Geochim. Cosmochim. Acta, 59, 1299-1305.   DOI   ScienceOn
13 Tossell, J.A. (2009) Catching $CO_{2}$ in a bowl. Inorg. Chem., 48, 7105-7110.   DOI   ScienceOn
14 Jambon, A. (1994). Earth degassing and large-scale geochemical cycling of volatile elements. In: Carroll, M.R. and Holloway, J.R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 479-517.
15 Wyllie, P.J. and Tuttle, O.F. (1959) Effect of carbon dioxide on the melting of granite and feldspars. Am. J. Sci., 257, 648-655.   DOI
16 Holloway, J.R. and Blank, J.G. (1994). Application of experimental results to C-O-H species in natural melts. In: Carroll, M. R. and Holloway, J. R.(eds.) Volatiles in magmas, Mineral. Soc. America, 30, 187-230.
17 Hugh-Jones, D.A. and Angel, R.J. (1994) A compressional study of $MgSiO_{3}$ orthoenstatite up to 8.5 GPa. Am. Mineral., 79, 405-410.
18 Keppler, H., Wiedenbeck, M., and Shcheka, S.S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature, 424, 414-416.
19 Kerrick, D.M. and Connolly, J.A.D. (2001) Metamorphic devolatilization of subducted oceanic metabasalts: Implications for seismicity, arc magmatism and volatile recycling. Earth Planet. Sci. Lett., 189, 19-29.   DOI   ScienceOn
20 Kim, Fei, and Lee (in preparation)
21 King, P.L. and Holloway, J.R. (2002) $CO_{2}$ solubility and speciation in intermediate (andesitic) melts: the role of $H_{2}O$ and composition. Geochim. Cosmochim. Acta, 66, 1627-1640.   DOI   ScienceOn
22 Kohn, S.C., Dupree, R., and Smith, M.E. (1989) A multinuclear magnetic-resonance study of the structure of hydrous albite glasses. Geochim. Cosmochim. Acta, 53, 2925-2935.   DOI   ScienceOn
23 Kohn, S.C., Brooker, R.A., and Dupree, R. (1991) C-13 MAS NMR - A method for studying $CO_{2}$ speciation in glasses. Geochim. Cosmochim. Acta, 55, 3879-3884.   DOI   ScienceOn
24 Kubicki, J.D. and Stolper, E.M. (1995) Structural roles of $CO_{2}$ and $CO_{3}^{2-}$- in fully polymerized sodium aluminosilicate melts and glasses. Geochim. Cosmochim. Acta, 59, 683-698.   DOI   ScienceOn
25 Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001b) Structural controls on the solubility of $CO_{2}$ in silicate melts Part II: IR characteristic of carbonate groups in silicate glasses. Chem. Geol., 174, 241-254.   DOI   ScienceOn
26 Luth, R.W. (2003) Mantle volatiles-distribution and consequences. In: Heinrich, D.H., and Karl, K. T. (eds.) Treatise on Geochemistry, Pergamon, 319-361.
27 McQuarrie, D.A. and Simon, J.D. (1997) Physical chemistry: a molecular approach, University Science Books, Sausalito, 1360p.
28 Morizet, Y., Paris, M., Gaillard, F., and Scaillet, B. (2010) C-O-H fluid solubility in haplobasalt under reducing conditions: An experimental study. Chem. Geol., 279, 1-16.   DOI   ScienceOn
29 Chopelas, A. (1999). Estimates of mantle relevant Clapeyron slopes in the $MgSiO_{3}$ system from highpressure spectroscopic data. Am. Mineral., 84, 233-244.   DOI
30 Di Valentin, C., Pacchioni, G., and Selloni, A. (2005) Theory of carbon doping of titanium dioxide. Chem. Mater., 17, 6656-6665.   DOI   ScienceOn
31 Dybowski, C., Gaffney, E.J., Sayir, A., and Rabinowitz, M.J. (1996) Solid-state $^{13}C$ and $^{29}Si$ MAS NMR spectroscopy of silicon carbide. Colloid. Surface. A, 118, 171-181.   DOI   ScienceOn
32 Eggler, D.H., Mysen, B.O., Hoering, T.C., and Holloway, J.R. (1979) Solubility of carbon-monoxide in silicate melts at high-pressures and its effect on silicate phase-relations. Earth Planet. Sci. lett., 43, 321-330.   DOI   ScienceOn
33 Fine, G. and Stolper, E (1985) The speciation of carbon-dioxide in sodium aluminosilicate glasses. Contrib. Mineral. Petrol., 91, 105-121.   DOI   ScienceOn
34 Freund, F., Kathrein, H., Wengeler, H., Knobel, R., and Reinen, H.J. (1980) Carbon in solid solution in forsterite--a key to the untractable nature of reduced carbon in terrestrial and cosmogenic rocks. Geochim. Cosmochim. Acta, 44, 1319-1321, 1323-1333.   DOI   ScienceOn
35 이유수, 이성근 (2010) 산소 K-전자껍질 에너지-손실 흡수끝-부근 구조 양자계산을 이용한 Si-$O_{2}$ 동질이상 광물의 전자구조 연구. 한국광물학회지, 23, 403-411.
36 Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J. B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D. J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P. M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C., and Pople, J.A. (2004) Gaussian 03. Gaussian, Inc., Wallingford CT.
37 Green, D.H., Eggings, S.M., and Yaxley, G. (1993) The other carbon cycle. Nature, 365, 210-211.   DOI
38 이범한, 이성근 (2007) 캐올리나이트 규산염 층과 벤질알코올의 반응에 대한 양자화학계산에서 결정학적 위상이 멀리켄 전하와 자기 차폐 텐서에 미치는 영향. 한국광물학회지, 20, 313-325.
39 Alam, T.M., Friedmann, T.A., and Jurewicz, J.G. (2002) Solid State 13C MAS NMR investigations of amorphous carbon thin films structural changes during annealing. In: Soriaga, M.P., Stickney, J., Bottomley, L.A., and Kim, Y.-G.(eds.) Thin films: Preparation, characterization, applications., Kluwer, 370.
40 Alam, T.M., Friedmann, T.A., Schultz, P.A., and Sebastiani, D. (2003) Low temperature annealing in tetrahedral amorphous carbon thin films observed by C-13 NMR spectroscopy. Phys. Rev. B, 67, 245309.   DOI   ScienceOn
41 Behrens, H. and Gaillard, F. (2006) Geochemical aspects of melts: Volatiles and redox behavior. Elements, 2, 275-280.   DOI   ScienceOn
42 Blank, J.G. and Brooker, R.A. (1994) Experimental studies of carbon dioxide in silicate melts: Solubility, speciation, and stable carbon isotope behavior. In: Carroll, M.R., and Holloway, J.R.(eds.) Volatiles in Magmas, Mineral. Soc. Am.
43 Brooker, R.A., Kohn, S.C., Holloway, J.R., McMillan, P.F., and Carroll, M.R. (1999) Solubility, speciation and dissolution mechanisms for $CO_{2}$ in melts on the $NaAlO_{2}$-$SiO_{2}$ join. Geochim. Cosmochim. Acta, 63, 3549-3565.   DOI   ScienceOn
44 Blank, J.G., Stolper, E.M., and carroll, M.R. (1993) Solubilities of caron-dioxide and water in rhyolitic melt at 850-degrees-C and 750 Bars. Earth Planet. Sci. Lett., 119, 27-36.   DOI   ScienceOn
45 Brearley, M. and Montana A. (1989) The effect of $CO_{2}$ on the viscosity of silicate liquids at high- pressure. Geochim. Cosmochim. Acta, 53, 2609- 2616.   DOI   ScienceOn
46 Brey, G. (1976) $CO_{2}$ solubility and solubility mechanisms in silicate melts at high-pressures. Contrib. Mineral. Petrol., 57, 215-221.   DOI   ScienceOn
47 Brooker, R.A., Kohn, S.C., Holloway, J.R., and Mc-Millan, P.F. (2001a) Structural controls on the solubility of $CO_{2}$ in silicate melts Part I: Bulk solubility data. Chem. Geol., 174, 225-239.   DOI   ScienceOn