DOI QR코드

DOI QR Code

A Wavepacket Study on Translational Energy Distributions of the Photo-stimulated Desorbed Xe from an Oxidized Si(001) Surface

  • Abe, Atsutoshi (Department of Chemical System Engineering, The University of Tokyo) ;
  • Yamashita, Koichi (Department of Chemical System Engineering, The University of Tokyo)
  • Published : 2003.06.20

Abstract

We report a quantum wavepacket study on the characteristic bimodal translational energy distribution of photostimulated desorbed Xe from an oxidized silicon (001) surface observed by Watanabe and Matsumoto, Faraday Discuss. 117 (2000) 203. We have simulated the theoretical translational energy distributions based on wavepacket calculations with a sudden transition and averaging model to reproduce the experiment. We discuss the desorption mechanism and suggest a very strong position dependence of the deexcitation processes for Xe/oxidized Si(001).

Keywords

References

  1. Laser Spectroscopy and Photochemistry on Metal Surfaces, Advancesin Physical Chemistry Series; Dai, H.-L.; Ho, W., Eds.; WorldScientific: Singapore, 1995.
  2. Gadzuk, J. W. Femtosecond Chemistry; Manz, J.; Wöte, L., Eds.;VCH: Weinheim, 1995; p 603.
  3. Saalfrank, P. Chem. Phys. 1995, 193, 119. https://doi.org/10.1016/0301-0104(94)00412-4
  4. Saalfrank, P.; Kosloff, R. J. Chem. Phys. 1996, 105, 2441. https://doi.org/10.1063/1.472112
  5. Guo, H. J. Chem. Phys. 1996, 106, 1967. https://doi.org/10.1063/1.473333
  6. Gao, S. Phys. Rev. B 1997, 55, 1876. https://doi.org/10.1103/PhysRevB.55.1876
  7. Yi, Z.; Micha, D. A.; Sund, J. J. Chem. Phys. 1999, 110, 10562. https://doi.org/10.1063/1.478988
  8. Misewich, J. A.; Heinz, T. F.; Newns, D. M. Phys. Rev. Lett. 1992,68, 3737. https://doi.org/10.1103/PhysRevLett.68.3737
  9. Menzel, D.; Gomer, R. J. Chem. Phys. 1964, 41, 3311. https://doi.org/10.1063/1.1725730
  10. Redhead, P. A. Can. Phys. 1964, 42, 886. https://doi.org/10.1139/p64-083
  11. Antoniewicz, P. R. Phys. Rev. B 1980, 21, 3811. https://doi.org/10.1103/PhysRevB.21.3811
  12. Nakatsuji, H.; Morita, H.; Nakai, H.; Murata, Y.; Fukutani, K. J.Chem. Phys. 1996, 104, 714. https://doi.org/10.1063/1.470796
  13. Klamroth, T.; Saalfrank, P. Surf. Sci. 1998, 410, 21. https://doi.org/10.1016/S0039-6028(98)00288-X
  14. Kluner, T.; Freund, H.-J.; Freitag, J.; Staemmler, V. J. Chem. Phys.1996, 104, 10030. https://doi.org/10.1063/1.471747
  15. Akinaga, Y.; Taketsugu, T.; Hirao, K. J. Chem. Phys. 1997, 107, 415. https://doi.org/10.1063/1.474403
  16. Kluner, T.; Freund, H.-J.; Staemmler, V.; Kosloff, R. Phys. Rev.Lett. 1998, 80, 5208. https://doi.org/10.1103/PhysRevLett.80.5208
  17. Alavi, S.; Rousseau, R.; Seideman, T. J. Chem. Phys. 2000, 113, 4412. https://doi.org/10.1063/1.1287796
  18. Watanabe, K.; Matsumoto, Y. Faraday Discuss. 2000, 117, 203. https://doi.org/10.1039/b002844o
  19. Abe, A.; Yamashita, K. Chem. Phys. Lett. 2001, 343, 143. https://doi.org/10.1016/S0009-2614(01)00527-9
  20. Gadzuk, J. W.; Richter, L. J.; Buntin, S. A.; King, D. S.;Cavanagh, R. R. Surf. Sci. 1990, 235, 317. https://doi.org/10.1016/0039-6028(90)90807-K
  21. Saalfrank, P. Chem. Phys. 1996, 211, 265. https://doi.org/10.1016/0301-0104(96)00178-4
  22. Balakrishnan, N.; Kalyanaraman, C.; Sathyamurthy, N. Phys. Rep.1997, 280, 79. https://doi.org/10.1016/S0370-1573(96)00025-7
  23. Kosloff, R. J. Phys. Chem. 1988, 92, 2087. https://doi.org/10.1021/j100319a003
  24. Petravi, M.; Deenapanray, P. N. K.; Comtet, G.; Hellner, L.;Dujardin, G.; Usher, B. F. Phys. Rev. Lett. 2000, 84, 2255. https://doi.org/10.1103/PhysRevLett.84.2255
  25. Eichhorn, G.; Richter, M.; Al-Shamery, K.; Zacharias, H. J. Chem.Phys. 1999, 111, 38.
  26. Gortel, Z. W.; Wierzbicki, A. Phys. Rev. B 1991, 43, 7487. https://doi.org/10.1103/PhysRevB.43.7487

Cited by

  1. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450