• Title/Summary/Keyword: Quantum Efficiency

검색결과 764건 처리시간 0.03초

Performance assessment of HEPA filter against radioactive aerosols from metal cutting during nuclear decommissioning

  • Lee, Min-Ho;Yang, Wonseok;Chae, Nakkyu;Choi, Sungyeol
    • Nuclear Engineering and Technology
    • /
    • 제52권5호
    • /
    • pp.1043-1050
    • /
    • 2020
  • Radioactive aerosols are produced during the cutting of contaminated and activated metals. They must be collected and removed by a high-performing filtration system before releasing to the environment from the decommissioning workplace. The filtration system requires regular replacement to ensure the sufficient removal of radioactive aerosols because its filtration efficiency gradually decreases. This study evaluates the efficiency and lifetime of filters while cutting metals by using a plasma arc cutter. Particularly, this study considers the aerodynamic diameter distribution of number and mass concentrations for aerosols from 6 nm to 10 ㎛ when evaluating the performance of filters. After 20 time reuses for cutting operation performed in a cutting chamber, the removal efficiency is reduced from over 99 to below 93% at 2 ㎛. The results are used to analyze the lifetime of filters, the frequencies of their replacements, and impact on internal radiation dose.

Quantum Bee Colony Optimization and Non-dominated Sorting Quantum Bee Colony Optimization Based Multi-relay Selection Scheme

  • Ji, Qiang;Zhang, Shifeng;Zhao, Haoguang;Zhang, Tiankui;Cao, Jinlong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4357-4378
    • /
    • 2017
  • In cooperative multi-relay networks, the relay nodes which are selected are very important to the system performance. How to choose the best cooperative relay nodes is an optimization problem. In this paper, multi-relay selection schemes which consider either single objective or multi-objective are proposed based on evolutionary algorithms. Firstly, the single objective optimization problems of multi-relay selection considering signal to noise ratio (SNR) or power efficiency maximization are solved based on the quantum bee colony optimization (QBCO). Then the multi-objective optimization problems of multi-relay selection considering SNR maximization and power consumption minimization (two contradictive objectives) or SNR maximization and power efficiency maximization (also two contradictive objectives) are solved based on non-dominated sorting quantum bee colony optimization (NSQBCO), which can obtain the Pareto front solutions considering two contradictive objectives simultaneously. Simulation results show that QBCO based multi-relay selection schemes have the ability to search global optimal solution compared with other multi-relay selection schemes in literature, while NSQBCO based multi-relay selection schemes can obtain the same Pareto front solutions as exhaustive search when the number of relays is not very large. When the number of relays is very large, exhaustive search cannot be used due to complexity but NSQBCO based multi-relay selection schemes can still be used to solve the problems. All simulation results demonstrate the effectiveness of the proposed schemes.

자기조립단분자막을 이용한 양자점 발광다이오드의 전하 균형도 개선 (Improved charge balance in quantum dot light-emitting diodes using self-assembled monolayer)

  • 박상욱;정운호;배예윤;임재훈;노정균
    • 전기전자학회논문지
    • /
    • 제27권1호
    • /
    • pp.30-37
    • /
    • 2023
  • 양자점 발광 다이오드(QD-LED)의 효율과 안정성 향상을 위해서 QD 발광층에 주입되는 전하의 균형을 이루는 것은 필수이다. 산화 아연(ZnO)은 최신 QD-LED에서 전자수송층(electron transport layer, ETL)을 구성하기 위해 가장 많이 사용되고 있으나, ZnO의 자발적인 전자 주입은 QD-LED의 성능을 크게 열화시키는 과도한 전자 주입을 유발한다. 본 연구에서는 자기조립단분자막(self-assembled monolayer, SAM) 처리를 통해 ZnO의 전자 주입 특성을 조절하여 QD-LED의 성능을 향상시켰다. 전하 균형도를 향상시킨 결과, SAM을 처리한 QD-LED는 SAM을 처리 안한 소자와 비교하여 내부 양자 효율(external quantum efficiency, EQE)이 25%, 최대 휘도는 200% 향상되었다.

단일광자 검출기 기술개발 동향 (Single Photon Detectors Technologies Development Trends for Quantum Information)

  • 이욱재;심재식;윤천주
    • 전자통신동향분석
    • /
    • 제35권4호
    • /
    • pp.21-33
    • /
    • 2020
  • Single photon detector technologies have emerged as powerful tools in optical quantum information applications such as quantum communication, quantum information, and integrated quantum photonics. Owing to significant attempts in the previous decade at improving photon-counting detectors, several single photon detectors with high efficiency and low noise have been realized within the optical wavelength regime. In this paper, we provide an overview of current studies on single photon detectors operating at wavelengths from the ultraviolet to the infrared. In addition, we discuss applications of single photon detector technologies in quantum communication and integrated quantum photonics.

Bandgap Tuning and Quenching Effects of In(Zn)P@ZnSe@ZnS Quantum Dots

  • Sang Yeon Lee;Su Hyun Park;Gyungsu Byun;Chang-Yeoul Kim
    • 한국분말재료학회지
    • /
    • 제31권3호
    • /
    • pp.226-235
    • /
    • 2024
  • InP quantum dots (QDs) have attracted researchers' interest due to their applicability in quantum dot light-emitting displays (QLED) or biomarkers for detecting cancers or viruses. The surface or interface control of InP QD core/ shell has substantially increased quantum efficiency, with a quantum yield of 100% reached by introducing HF to inhibit oxide generation. In this study, we focused on the control of bandgap energy of quantum dots by changing the Zn/(In+Zn) ratio in the In(Zn)P core. Zinc incorporation can change the photoluminescent light colors of green, yellow, orange, and red. Diluting a solution of as-synthesized QDs by more than 100 times did not show any quenching effects by the Förster resonance energy transfer phenomenon between neighboring QDs.

BCP의 증착조건에 따른 전기적 및 광학적 특성에 미치는 영향 (Affect influenceable the Electrical and Optical Characteristics depending on the Deposition Condition of BCP)

  • 김원종;최현민;김정식;정인범;이상교;홍진웅
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.34-35
    • /
    • 2009
  • We have studied the electrical and optical of organic light-emitting diodes depending on hole size of crucible boat using BCP materials. The thickness of TPD, $Alq_3$ and BCP was manufactured 40 nm, 60 nm and 5 nm under a base pressure of $5\times10^{-6}$ Torr using at thermal evaporation, respectively. In order to investigate the optimal surface roughness of BCP, the BCP was thermally evaporated to be 0.8 nun, 1.0 mm, 1.2 mm and 1.5 mm as a hole size of crucible boat, respectively. As the experimental results, we found that the luminous efficiency and the external quantum efficiency of the device is superior to others when hole size of crucible boat using BCP is 1.2 mm. Also, compared to the ones from the devices having the hole size of crucible boat is 1.0 mm and 1.5mm layer, the external quantum efficiency were improved by 2.5 and 2.4 times.

  • PDF

Strong Carrier Localization and Diminished Quantum-confined Stark Effect in Ultra-thin High-Indium-content InGaN Quantum Wells with Violet Light Emission

  • Ko, Suk-Min;Kwack, Ho-Sang;Park, Chunghyun;Yoo, Yang-Seok;Yoon, Euijoon;Cho, Yong-Hoon
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2014년도 제46회 동계 정기학술대회 초록집
    • /
    • pp.293-293
    • /
    • 2014
  • Over last decade InGaN alloy structures have become the one of the most promising materials among the numerous compound semiconductors for high efficiency light sources because of their direct band-gap and a wide spectral region (ultraviolet to infrared). The primary cause for the high quantum efficiency of the InGaN alloy in spite of high threading dislocation density caused by lattice misfit between GaN and sapphire substrate and severe built-in electric field of a few MV/cm due to the spontaneous and piezoelectric polarizations is generally known as the strong exciton localization trapped by lattice-parameter-scale In-N clusters in the random InGaN alloy. Nonetheless, violet-emitting (390 nm) conventional low-In-content InGaN/GaN multi-quantum wells (MQWs) show the degradation in internal quantum efficiency compared to blue-emitting (450 nm) MQWs owing higher In-content due to the less localization of carrier and the smaller band offset. We expected that an improvement of internal quantum efficiency in the violet region can be achieved by replacing the conventional low-In-content InGaN/GaN MQWs with ultra-thin, high-In-content (UTHI) InGaN/GaN MQWs because of better localization of carriers and smaller quantum-confined Stark effect (QCSE). We successfully obtain the UTHI InGaN/GaN MQWs grown via employing the GI technique by using the metal-organic chemical vapor deposition. In this work, 1 the optical and structural properties of the violet-light-emitting UTHI InGaN/GaN MQWs grown by employing the GI technique in comparison with conventional low-In-content InGaN/GaN MQWs were investigated. Stronger localization of carriers and smaller QCSE were observed in UTHI MQWs as a result of enlarged potential fluctuation and thinner QW thickness compared to those in conventional low-In-content MQWs. We hope that these strong carrier localization and reduced QCSE can turn the UTHI InGaN/GaN MQWs into an attractive candidate for high efficient violet emitter. Detailed structural and optical characteristics of UTHI InGaN/GaN MQWs compared to the conventional InGaN/GaN MQWs will be given.

  • PDF

미세유체반응기를 이용한 core/shell 연속 합성 시스템을 이용한 CdSe/ZnS 양자점 합성 및 분석 (Synthesis and analysis CdSe/ZnS quantum dot with a Core/shell Continuous Synthesis System Using a Microfluidic Reactor)

  • 홍명환;주소영;강이승;이찬기
    • 한국분말재료학회지
    • /
    • 제25권2호
    • /
    • pp.132-136
    • /
    • 2018
  • Core/shell CdSe/ZnS quantum dots (QDs) are synthesized by a microfluidic reactor-assisted continuous reactor system. Photoluminescence and absorbance of synthesized CdSe/ZnS core/shell QDs are investigated by fluorescence spectrophotometry and online UV-Vis spectrometry. Three reaction conditions, namely; the shell coating reaction temperature, the shell coating reaction time, and the ZnS/CdSe precursor volume ratio, are combined in the synthesis process. The quantum yield of the synthesized CdSe QDs is determined for each condition. CdSe/ZnS QDs with a higher quantum yield are obtained compared to the discontinuous microfluidic reactor synthesis system. The maximum quantum efficiency is 98.3% when the reaction temperature, reaction time, and ZnS/CdSe ratio are $270^{\circ}C$, 10 s, and 0.05, respectively. Obtained results indicate that a continuous synthesis of the Core/shell CdSe/ZnS QDs with a high quantum efficiency could be achieved by isolating the reaction from the external environment.

양자점 입도제어를 통한 양자점 감응형 태양전지 단락전류 향상 (Improvement of Short-Circuit Current of Quantum Dot Sensitive Solar Cell Through Various Size of Quantum Dots)

  • 지승환;윤혜원;이진호;김범성;김우병
    • 한국재료학회지
    • /
    • 제31권1호
    • /
    • pp.16-22
    • /
    • 2021
  • In this study, quantum dot-sensitized solar cells (QDSSC) using CdSe/ZnS quantum dots (QD) of various sizes with green, yellow, and red colors are developed. Quantum dots, depending their different sizes, have advantages of absorbing light of various wavelengths. This absorption of light of various wavelengths increases the photocurrent production of solar cells. The absorption and emission peaks and excellent photochemical properties of the synthesized quantum dots are confirmed through UV-visible and photoluminescence (PL) analysis. In TEM analysis, the average sizes of individual green, yellow, and red quantum dots are shown to be 5 nm, 6 nm, and 8 nm. The J-V curves of QDSSC for one type of QD show a current density of 1.7 mA/㎠ and an open-circuit voltage of 0.49 V, while QDSSC using three type of QDs shows improved electrical characteristics of 5.52 mA/㎠ and 0.52 V. As a result, the photoelectric conversion efficiency of QDSSC using one type of QD is as low as 0.53 %, but QDSSC using three type of QDs has a measured efficiency of 1.4 %.

에너지스펙트럼 분석을 통한 폴리스타이렌 기반 플라스틱 섬광체의 파장쉬프터 비율 최적화 (Optimization of the Wavelength Shifter Ratio in a Polystyrene Based Plastic Scintillator through Energy Spectrum Analysis)

  • 김예원;문명국;김명수;유현준;이대희;조규성
    • 방사선산업학회지
    • /
    • 제10권4호
    • /
    • pp.167-171
    • /
    • 2016
  • The scintillation efficiency of the polystyrene based plastic scintillator depends on the ratio of the wavelength shifters, organic fluors(PPO and POPOP). Thus, 24 samples of the plastic scintillator were fabricated in order to find out the optimum ratio of the wavelength shifters in the plastic scintillator. The fabricated plastic scintillators were trimmed through a cutting and polishing process. They were used in gamma energy spectrum measurement with the $^{137}Cs$ emitting mono-energy photon with 662 keV for the comparison of the scintillation efficiency. As a result, it was found out that the scintillator sample with 1.00 g of PPO (2,5-Diphenyloxazole) and 0.50 g of POPOP (1,4-Bis(5-phnyl-2oxidazolyl)benzene) dissolved in 100 g of styrene solution has the optimum ratio in terms of the light yield of the polystyrene based plastic scintillator.