• Title/Summary/Keyword: Quantized Neural Network

Search Result 24, Processing Time 0.015 seconds

Realtime Hardware Neural Networks using Interpolation Techniques of Information Data (정보데이터의 복원기법 응용한 실시간 하드웨어 신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.506-507
    • /
    • 2007
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed.

  • PDF

Cardio-Angiographic Sequence Coding Using Neural Network Adaptive Vector Quantization (신격회로망 적응 VQ를 이용한 심장 조영상 부호화)

  • 주창희;최종수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.374-381
    • /
    • 1991
  • As a diagnostic image of hospitl, the utilization of digital image is steadily increasing. Image coding is indispensable for storing and compressing an enormous amount of diagnostic images economically and effectively. In this paper adaptive two stage vector quantization based on Kohonen's neural network for the compression of cardioangiography among typical angiography of radiographic image sequences is presented and the performance of the coding scheme is compare and gone over. In an attempt to exploit the known characteristics of changes in cardioangiography, relatively large blocks of image are quantized in the first stage and in the next stage the bloks subdivided by the threshold of quantization error are vector quantized employing the neural network of frequency sensitive competitive learning. The scheme is employed because the change produced in cardioangiography is due to such two types of motion as a heart itself and body motion, and a contrast dye material injected. Computer simulation shows that the good reproduction of images can be obtained at a bit rate of 0.78 bits/pixel.

  • PDF

A Modified Deterministic Boltzmann Machine Learning Algorithm for Networks with Quantized Connection (양자화 결합 네트워크를 위한 수정된 결정론적 볼츠만머신 학습 알고리즘)

  • 박철영
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.7 no.3
    • /
    • pp.62-67
    • /
    • 2002
  • From the view point of VLSI implementation, a new teaming algorithm suited for network with quantized connection weights is desired. This paper presents a new teaming algorithm for the DBM(deterministic Boltzmann machine) network with quantized connection weight. The performance of proposed algorithm is tested with the 2-input XOR problem and the 3-input parity problem through computer simulations. The simulation results show that our algorithm is efficient for quantized connection neural networks.

  • PDF

Accuracy Improvement Method for 1-Bit Convolutional Neural Network (1-Bit 합성곱 신경망을 위한 정확도 향상 기법)

  • Im, Sung-Hoon;Lee, Jae-Heung
    • Journal of IKEEE
    • /
    • v.22 no.4
    • /
    • pp.1115-1122
    • /
    • 2018
  • In this paper, we analyze the performance degradation of previous 1-Bit convolutional neural network method and introduce ways to mitigate it. Previous work applies 32-Bit operation to first and last layers. But our method applies 32-Bit operation to second layer too. We also show that nonlinear activation function can be removed after binarizing inputs and weights. In order to verify the method proposed in this paper, we experiment the object detection neural network for korean license plate detection. Our method results in 96.1% accuracy, but the existing method results in 74% accuracy.

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • Kim, Jong-Man;Hwang, Jong-Sun;Kim, Young-Min
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion, In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed,

  • PDF

Information Propagation Neural Networks for Real-time Recognition of Vehicles in bad load system (최악환경의 도로시스템 주행시 장애물의 인식율 위한 정보전파 신경회로망)

  • Kim, Jong-Man;Kim, Won-Sop;Lee, Hai-Ki;Han, Byung-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05b
    • /
    • pp.90-95
    • /
    • 2003
  • For the safety driving of an automobile which is become individual requisites, a new Neural Network algorithm which recognized the load vehicles in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of vehicles, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been composed and various experiments with static and dynamic signals have been implemented.

  • PDF

Propagation Neural Networks for Real-time Recognition of Error Data (에라 정보의 실시간 인식을 위한 전파신경망)

  • 김종만;황종선;김영민
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • For Fast Real-time Recognition of Nonlinear Error Data, a new Neural Network algorithm which recognized the map in real time is proposed. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. The most reliable algorithm derived for real time recognition of map, is a dynamic programming based algorithm based on sequence matching techniques that would process the data as it arrives and could therefore provide continuously updated neighbor information estimates. Through several simulation experiments, real time reconstruction of the nonlinear map information is processed.

  • PDF

Correlation Propagation Neural Networks for processing On-line Interpolation of Multi-dimention Information (임의의 다차원 정보의 온라인 전송을 위한 상관기법전파신경망)

  • Kim, Jong-Man;Kim, Won-Sop
    • Proceedings of the KIEE Conference
    • /
    • 2007.11c
    • /
    • pp.83-87
    • /
    • 2007
  • Correlation Propagation Neural Networks is proposed for On-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D CPNN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the CPNN hardware.

  • PDF

Development of Information Propagation Neural Networks processing On-line Interpolation (실시간 보간 가능을 갖는 정보전파신경망의 개발)

  • Kim, Jong-Man;Sin, Dong-Yong;Kim, Hyong-Suk;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.461-464
    • /
    • 1998
  • Lateral Information Propagation Neural Networks (LIPN) is proposed for on-line interpolation. The proposed neural network technique is the real time computation method through the inter-node diffusion. In the network, a node corresponds to a state in the quantized input space. Each node is composed of a processing unit and fixed weights from its neighbor nodes as well as its input terminal. Information propagates among neighbor nodes laterally and inter-node interpolation is achieved. Through several simulation experiments, real time reconstruction of the nonlinear image information is processed. 1-D LIPN hardware has been implemented with general purpose analog ICs to test the interpolation capability of the proposed neural networks. Experiments with static and dynamic signals have been done upon the LIPN hardware.

  • PDF