• Title/Summary/Keyword: Quantization coefficients

Search Result 169, Processing Time 0.027 seconds

Inverse quantization of DCT coefficients using Laplacian pdf (Laplacian pdf를 적용한 DCT 계수의 역양자화)

  • 강소연;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.6C
    • /
    • pp.857-864
    • /
    • 2004
  • Many image compression standards such as JPEG, MPEG or H.263 are based on the discrete cosine transform (DCT) and quantization method. Quantization error. is the major source of image quality degradation. The current dequantization method assumes the uniform distribution of the DCT coefficients. Therefore the dequantization value is the center of each quantization interval. However DCT coefficients are regarded to follow Laplacian probability density function (pdf). The center value of each interval is not optimal in reducing squared error. We use mean of the quantization interval assuming Laplacian pdf, and show the effect of correction on image quality. Also, we compare existing quantization error to corrected quantization error in closed form. The effect of PSNR improvements due to the compensation to the real image is in the range of 0.2 ∼0.4 ㏈. The maximum correction value is 1.66 ㏈.

Secret Data Communication Method using Quantization of Wavelet Coefficients during Speech Communication (음성통신 중 웨이브렛 계수 양자화를 이용한 비밀정보 통신 방법)

  • Lee, Jong-Kwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.302-305
    • /
    • 2006
  • In this paper, we have proposed a novel method using quantization of wavelet coefficients for secret data communication. First, speech signal is partitioned into small time frames and the frames are transformed into frequency domain using a WT(Wavelet Transform). We quantize the wavelet coefficients and embedded secret data into the quantized wavelet coefficients. The destination regard quantization errors of received speech as seceret dat. As most speech watermark techniques have a trade off between noise robustness and speech quality, our method also have. However we solve the problem with a partial quantization and a noise level dependent threshold. In additional, we improve the speech quality with de-noising method using wavelet transform. Since the signal is processed in the wavelet domain, we can easily adapt the de-noising method based on wavelet transform. Simulation results in the various noisy environments show that the proposed method is reliable for secret communication.

  • PDF

DZDC Coefficient Distributions for P-Frames in H.264/AVC

  • Wu, Wei;Song, Bin
    • ETRI Journal
    • /
    • v.33 no.5
    • /
    • pp.814-817
    • /
    • 2011
  • In this letter, the distributions of direct current (DC) coefficients for P-frames in H.264/AVC are analyzed, and the distortion model of the Gaussian source under the quantization of the dead-zone plus-uniform threshold quantization with uniform reconstruction quantizer is derived. Experimental results show that the DC coefficients of P-frames are best approximated by the Laplacian distribution and the Gaussian distribution at small quantization step sizes and at large quantization step sizes, respectively.

Non-fixed Quantization Considering Entropy Encoding in HEVC (HEVC 엔트로피 부호화를 고려한 비균등 양자화 방법)

  • Gweon, Ryeong-Hee;Han, Woo-Jin;Lee, Yung-Lyul
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.1036-1046
    • /
    • 2011
  • MPEG and VCEG have constituted a collaboration team called JCT-VC(Joint Collaborative Team on Video Coding) and have been developing HEVC(High Efficiency Video Coding) standard. All transform coefficients in a TU(Transform Unit) have been equally quantized according to the quantization and inverse quantization method which is used in HEVC standard. Such an equal quantization is not efficient because the transformed coefficients in the TU are not eqully distributed. Furthermore, the quantized coefficients which is positioned in later scanning order cannot be efficient due to the entropy scanning method. We suggest an algorithm that transform coefficients are quantized at different values according to the position in TU considering a scanning order of entropy encoding to improve the coding efficiency. The principle of this algorithm is that quantization and inverse quantization are carried out according to the scanning order which is in accordance with the statistical characteristic of distribution of quantized transform coefficients. The proposed algorithm shows on the average of 0.34% Y BD-rate compression rate improvement.

Implementation of a CELP coder based on optimum quantization of the LPC coefficients (LPC 계수의 최적 양자화에 기초한 음성 코더 구현)

  • Lee, W.J.;Park, J.T.;Chang, T.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2516-2518
    • /
    • 2001
  • The quantization of the LPC parameters is a very important aspect of the speech compression algorithm. This paper analyzes the quantization effect of the LPC coefficients and presents the implementation of a fixed-point CELP coder based on the LPC analysis.

  • PDF

Improvement of DCT-based Watermarking Scheme using Quantized Coefficients of Image (영상의 양자화 계수를 이용한 DCT 기반 워터마킹 기법)

  • Im, Yong-Soon;Kang, Eun-Young;Park, Jae-Pyo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.2
    • /
    • pp.17-22
    • /
    • 2014
  • Watermarking is one of the methods that insist on a copyright as it append digital signals in digital informations like still mobile image, video, other informations. This paper proposed an improved DCT-based watermarking scheme using quantized coefficients of image. This process makes quantized coefficients through a Discrete Cosine Transform and Quantization. The watermark is embedded into the quantization coefficients in accordance with location(key). The quantized watermarked coefficients are converted to watermarked image through the inverse quantization and inverse DCT. Watermark extract process only use watermarked image and location(key). In watermark extract process, quantized coefficients is obtained from watermarked image through a DCT and quantization process. The quantized coefficients select coefficients using location(key). We perform it using inverse DCT and get the watermark'. Simulation results are satisfied with high quality of image (PSNR) and Normalized Correlation(NC) from the watermarked image and the extracted watermark.

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

Modeling Quantization Error using Laplacian Probability Density function (Laplacian 분포 함수를 이용한 양자화 잡음 모델링)

  • 최지은;이병욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11A
    • /
    • pp.1957-1962
    • /
    • 2001
  • Image and video compression requires quantization error model of DCT coefficients for post processing, restoration or transcoding. Once DCT coefficients are quantized, it is impossible to recover the original distribution. We assume that the original probability density function (pdf) is the Laplacian function. We calculate the variance of the quantized variable, and estimate the variance of the DCT coefficients. We can confirm that the proposed method enhances the accuracy of the quantization error estimation.

  • PDF

Analysis of the JND-Suppression Effect in Quantization Perspective for HEVC-based Perceptual Video Coding

  • Kim, Jaeil;Kim, Munchurl
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.1
    • /
    • pp.22-27
    • /
    • 2015
  • Transform-domain JND (Just Noticeable Difference)-based for PVC (Perceptual Video Coding) is often performed in quantization processes to effectively remove perceptual redundancy. This study examined the JND-suppression effects on quantized coefficients of transform in HEVC (High Efficiency Video Coding). To reveal the JND-suppression effect in quantization, the properties of the floor functions were used for modeling the quantized coefficients, and a JND-adjustment process in an HEVC-compliant PVC scheme was used to tune the JND values by analyzing the JND suppression effect. In the experimental results, the bitrate reduction decreases slightly, but the PSNR and perceptual quality are improved significantly when the proposed JND adjustment process is applied.

Identifying Friendly and Foe Using a Watermarking Technique During Military Communication (군 통신상에서 워터마킹 기술을 이용한 피아식별 방법)

  • Lee, Jong-Kwan;Choi, Hyun-Joo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.81-89
    • /
    • 2006
  • In this paper, a watermark technique for identifying friendly and foe is proposed during communication. The speech signal is processed in several stages. First, speech signal is partitioned into small time frames and the frames are transformed into frequency domain using DFT(Discrete Frequency Transform). The DFT coefficients are quantized and the watermark signal is embedded into the quantized DFT coefficients. At the destination channel quantization errors of received signal are regarded as the watermark signal. Identification of friendly and foe are done by correlating the detected watermark and the original watermark. As in most other watermark techniques, this method has a trade off between noise robustness and quality. However, this is solved by a partial quantization and a noise level dependent quantization step. Simulation results in the various noisy environments show that the proposed method is reliable for identification between friendly and foe.