• Title/Summary/Keyword: Quantitative ultrasound

Search Result 143, Processing Time 0.04 seconds

Lifestyles and Factors Influencing the Bone Mineral Density (BMD) among Employees in a Community (일 지역 사무직 근로자의 생활습관과 골밀도 영향요인)

  • Paek, Kyung-Shin
    • Research in Community and Public Health Nursing
    • /
    • v.24 no.2
    • /
    • pp.236-244
    • /
    • 2013
  • Purpose: This study was to investigate lifestyles and identify factors influencing the bone mineral density (BMD) among employees in a community. Methods: Data were collected from 199 employees. Their lifestyles and BMIs were measured with a self-report questionnaire. As for their BMDs, their calcanei were measured with Quantitative Ultrasound. Results: Assessing their BMDs with reference to the WHO standards, 52.8% of the subjects' calcaneus BMDs were normal and 44.2% showed osteopenis, 3.0% showed osteoporosis. Age (odds ratio=1.05, p=.029), exercise (odds ratio=.31, p=.006) and the number of eating meals per day (odds ratio=1.97, p=.046) were significant factors influencing the subjects' BMDs. Conclusion: Strategies to emphasize exercise and dietary habits in employees are important for improving their bone mineral density. Programs for improving bone mineral density based on life cycle need to be developed.

Estimation of Hysteretic Interfacial Stiffness of Contact Surfaces

  • Kim, Nohyu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.3
    • /
    • pp.276-282
    • /
    • 2013
  • This paper proposes an ultrasonic method for measurement of linear and hysteretic interfacial stiffness of contacting surfaces between two steel plates subjected to nominal compression pressure. Interfacial stiffness was evaluated by the reflection and transmission coefficients obtained from three consecutive reflection waves from solid-solid surface using the shear wave. A nonlinear hysteretic spring model was proposed and used to define the quantitative interfacial stiffness of interface with the reflection and transmission coefficients. Acoustic model for 1-D wave propagation across interfaces is developed to formulate the reflection and transmission waves and to determine the linear and nonlinear hysteretic interfacial stiffness. Two identical plates are put together to form a contacting surface and pressed by bolt-fastening to measure interfacial stiffness at different states of contact pressure. It is found from experiment that the linear and hysteretic interfacial stiffness are successfully determined by the reflection and transmission coefficient at the contact surfaces through ultrasonic pulse-echo measurement.

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

The quantitative assessment of lumbar multifidus using ultrasound imaging (초음파 영상에서 다열근 측정)

  • Kim, Jun-Woo;Lee, Hae-Jung;Shin, Sang-Ho;Kim, Kwang-Baek
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2010.07a
    • /
    • pp.413-416
    • /
    • 2010
  • 본 논문에서는 요부 영상에서 근육을 추출하는 방법을 제안한다. 제안된 방법은 초음파 영상에서 왜곡이 존재하지 않는 영역을 측정 할 근육 영역을 설정한 후, 초기 초음파 영상에서 불필요한 잡음을 제거하고 Ends-in Search Stretching 기법을 적용하여 근육 영역의 명암 대비를 강조한다. 그리고 형태학적 특징을 이용하여 등뼈 영역과 피하지방을 분리한 후, 4 방향 윤곽선 추적 알고리즘을 적용하여 피하지방의 하단 부분을 추출한다. 또한 최대 및 최소 명암도를 조정하여 얻어진 등뼈의 후보 영역에서 형태학적 특징을 이용하여 잡음을 제거하고 최종적으로 등뼈 영역을 추출한다. 추출된 등뼈 영역에 대해 피하지방층과 등뼈 사이를 근육의 두께로 측정한다. 본 연구에서 제안된 방법을 요부의 초음파 영상에 적용하여 근육 영역을 추출한 결과, 제안된 방법이 초음파 영상에서 근육 영역들의 두께를 측정하는데 기존의 근육 측정 방법보다 효과적인 것을 확인 할 수 있었다.

  • PDF

Ultrasonographic Examination of Compression Neuropathy in the Upper Extremity (상지의 압박성 신경병증의 초음파 검사)

  • Chung, Yang-Guk;Kim, Bae-Gyun
    • The Journal of Korean Orthopaedic Ultrasound Society
    • /
    • v.1 no.1
    • /
    • pp.64-72
    • /
    • 2008
  • Compression neuropathy around elbow and wrist are one of the common disturbing problems in the upper extremity. The understanding of normal nerve architectures and pathophysiologic changes in compression neuropathy is important to interpret the ultrasonographic images correctly. Compression neuropathies have characteristic ultrasonographic imaging features of flattened nerve at compression and hypoechoic swollen nerve with loss of fascicular patterns at proximal segments. Dynamic ultrasonographic imagings on motion can show dymanic subluxation of ulnar nerve and medial head of triceps muscle over the medial epicondyle in snapping triceps syndrome. Dynamic compression of median nerve also can be visualized in pronator teres syndrome by dynamic imaging studies. A quantitative measures of cross sectional area or compression ratio can be helpful to diagnose compression neuropathies, such as carpal tunnel syndrome or cubital tunnel syndrome. With the clinical features and electeophysiologic studies, the untrasonographic imagings are useful tool for evaluation of the compression neuropathies in the upper extremities.

  • PDF

Study on the Dependence of Ultrasonic Phase Velocity on Porosity, Frequency and Propagation Angle in Cancellous Bone (해면질골에서 다공율, 주파수 및 전파각에 대한 초음파 위상속도의 의존성 연구)

  • Lee, Kang-Il;Kim, Yong-Tae;Choi, Min-Joo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.2
    • /
    • pp.112-118
    • /
    • 2008
  • In the present study, the dependence of ultrasonic phase velocity on porosity and frequency in cancellous bone was predicted using the Biot model and the modified Biot-Attenborough (MBA) model for propagation in fluid-saturated porous media. It was also compared with previously published measurements in human and bovine cancellous bones in vitro. It was shown that the phase velocity in cancellous bone decreased with increasing porosity and frequency The dependence of phase velocity on propagation angle in cancellous bone as predicted using the Schoenberg model together with the Biot model and tile MBA model which were modified to include the effect of angle. The theoretical models used in the present study advance our understanding of the interaction between ultrasound and cancellous bone and can be expected to be usefully employed for the diagnosis of osteoporosis.

Indirect Detection of Internal Defects in Wooden Rafter with Ultrasound

  • Lee, Sang-Joon;Lee, Sangdae;Pang, Sung-Jun;Kim, Chul-Ki;Kim, Kwang-Mo;Kim, Ki-Bok;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • The purpose of this research was development of quantitative ultrasonic test methodology for detecting internal defects in members of ancient wooden building. Connection part between wooden members and/or contacted or hidden part by wall of ceiling or other construction materials make it hard to apply direct way of ultrasonic test. So indirect way of ultrasonic test needed to be applied. Test methodology with newly developed prototype of ultrasonic system was proposed. Homogeneous material with polypropylene was also tested for establishing the criterion. Results showed that TOF(time of flight)-energy and pulse length were found out to be proper ultrasonic parameters for predicting depth of defect in wood different from polypropylene. It was not possible to directly apply prediction equation derived from polypropylene. Newly established prediction equation shows coefficient of determination of 0.73 for wood. Finally, defect of replaced rafter members was predicted with the coefficient of determination of 0.32. Various aspects of ultrasound propagation in wood including anisotropy need to be carefully considered to raise up the prediction accuracy.

Concurrent Validity and Test-retest Reliability of the Core Stability Test Using Ultrasound Imaging and Electromyography Measurements

  • Yoo, Seungju;Lee, Nam-Gi;Park, Chanhee;You, Joshua (Sung) Hyun
    • Physical Therapy Korea
    • /
    • v.28 no.3
    • /
    • pp.186-193
    • /
    • 2021
  • Background: While the formal test has been used to provide a quantitative measurement of core stability, studies have reported inconsistent results regarding its test-retest and intraobserver reliabilities. Furthermore, the validity of the formal test has never been established. Objects: This study aimed to establish the concurrent validity and test-retest reliability of the formal test. Methods: Twenty-two young adults with and without core instability (23.1 ± 2.0 years) were recruited. Concurrent validity was determined by comparing the muscle thickness changes of the external oblique, internal oblique, and transverse abdominal muscle to changes in core stability pressure during the formal test using ultrasound (US) imaging and pressure biofeedback, respectively. For the test-retest reliability, muscle thickness and pressure changes were repeatedly measured approximately 24 hours apart. Electromyography (EMG) was used to monitor trunk muscle activity during the formal test. Results: The Pearson's correlation analysis showed an excellent correlation between transverse abdominal thickness and pressure biofeedback unit (PBU) pressure as well as internal oblique thickness and PBU pressure, ranging from r = 0.856-0.980, p < 0.05. The test-retest reliability was good, intraclass correlation coefficient (ICC1,2) = 0.876 for the core stability pressure measure and ICC1,2 = 0.939 to 0.989 for the abdominal muscle thickness measure. Conclusion: Our results provide clinical evidence that the formal test is valid and reliable, when concurrently incorporated into EMG and US measurements.