• 제목/요약/키워드: Quantitative structure-activity relationship

검색결과 124건 처리시간 0.024초

Quantitative Structure-Activity Relationship (QSAR) Study by Use of Theoretical Descriptors : Quinolone and Naphthyridine

  • Lee Keun Woo;Kim Hojing
    • Bulletin of the Korean Chemical Society
    • /
    • 제15권12호
    • /
    • pp.1070-1079
    • /
    • 1994
  • Quantitative Structure-Activity Relationship (QSAR) studies are performed for the sets of 40 quinolones and 47 naphthyridines. Net charge, van der Waals volume, polarizability, and dipole moment are empolyed as theoretical descriptors(independent variables) to find the relationship between activity and physicochemical properties such as electrostatic effect, steric effect, and transferability. The results are analyzed by the regression and the factor analysis. It is found that for Gram-negative bacteria, the QSAR of quinolone and naphthyridine are substantially different: to describe the activity, the electrostatic effect is the most important for quinolone, and the steric effect and the transferability for naphthyridine.

Synthesis of 3-arylisoquinolinamines and 3D-Quantitative Structure Activity Relationships Study

  • Min, Sun-Young;Cho, Won-Jea
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.348.2-348.2
    • /
    • 2002
  • The significant antitumor activities of 3-arylisoquinolines promoted us to explore the structure-activity relationship of these compounds. A series of 3-Arylisoquinoline derivatives, which related to Benzo[c] phenanthridine alkaloids. were evaluated for antitumor cytotoxicity against human lung tumor cell (A 549). We tried to study structure-activity relationship (SAR) of 3-Arylisoquinolines using the comparative molecular field analysis (CoMFA) method. (omitted)

  • PDF

Racemic Descriptors for Quantitative Structure Activity Relationship of Spirosuccinimide Type Aldose Reductase Inhibitors

  • Kim, Jeong-Rim;Won, Young-Do
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권12호
    • /
    • pp.1874-1876
    • /
    • 2004
  • Quantitative structure activity relationship has been probed for spirosuccinimide-fused tetrahydropyrrolo[1,2-a]pyrazine-1,3-dione derivatives acting as aldose reductase inhibitors. While the spirosuccinimide compounds contain a chiral center, the aldose reductase inhibition assay was performed with racemic mixtures in the published work. As the physicochemical descriptors of the QSAR analysis must be evaluated for a definite molecular structure, we devise a new 'racemic' descriptor as the arithmetic mean of the (R)-enantiomer descriptor and the (S)-enantiomer descriptor. The resultant QSAR model derived from the racemic descriptors outperforms the original QSAR models, closely reproducing the observed activity of optically pure enantiomers as well as racemic mixtures.

Structure-Activity Relationship Study on Cephalosporins with Mechanism-based Descriptors

  • Jun-Ho Choi;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • 제14권5호
    • /
    • pp.631-635
    • /
    • 1993
  • The polarizability and the transition state energy of a cephalosporin are assumed to be theoretical indices of the permeability through the outer membrane and of reactivity of ${\beta}$ -lactam ring with penicillin binding proteins, respectively, in Gram-negative bacteria. They are computed by AM1 method and used as variables of quantitative structure-activity relationship study. The results justify quadratic dependence of the activity on the variables. The intersection of difference volumes between $\beta-lactamase$ stable cephalosporins and unstable ones manifests that the steric hindrance of 7-side chain is responsible for the ${\beta}$ -lactamase stability.

Hologram Quantitative Structure Activity Relationship Analysis of JNK Antagonists

  • Kulkarni, Seema A.;Madhavan, Thirumurthy
    • 통합자연과학논문집
    • /
    • 제8권2호
    • /
    • pp.81-88
    • /
    • 2015
  • c-Jun N-terminal kinase-3 (JNK3) is a member of the mitogen-activated protein kinase family (MAPK), and plays an important role in neurological disorders. Therefore, identification of selective JNK3 inhibitor may contribute towards neuroprotection therapies. In this work, we performed hologram quantitative structure-activity relationship (HQSAR) on a series of thiophene trisubstituted derivatives. The best predictions were obtained for HQSAR model with $q^2=0.628$ and $r^2=0.986$. Statistical parameters from the generated QSAR models indicated the data is well fitted and have high predictive ability. HQSAR result showed that atom, bond and chirality descriptors play an important role in JNK3 activity and also shows that electronegative groups is highly favourble to enhance the biological activity. Our results could be useful to design novel and selective JNK3 inhibitors.

Quantitative Structure Activity Relationship between Diazabicyclo-[4.2.0]octanes Derivatives and Nicotinic Acetylcholine Receptor Agonists

  • Kim, Eun-Ae;Jung, Kyoung-Chul;Sohn, Uy-Dong;Im, Chae-Uk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제13권1호
    • /
    • pp.55-59
    • /
    • 2009
  • Three dimensional quantitative structure activity relationship between diazabicyclo[4.2.0]octanes and nicotinic acetylcholine receptor($h{\alpha}4{\beta}2$ and $h{\alpha}3{\beta}4$) agonists was studied using comparative molecular field analysis(CoMFA) and comparative molecular similarity indices analysis(CoMSIA). From 11 CoMFA and CoMSIA models, CoMSIA with steric and electrostatic fields gave the best predictive models($q^2=0.926$ and 0.945, ${r^2}_{ncv}=0.983$ and 0.988). This study can be used to develop potent $h{\alpha}4{\beta}2$ receptor agonists with low activity on $h{\alpha}3{\beta}4$ subtype.

Three-Dimensional Quantitative Structure Activity Relationship Studies on the Flavone Cytotoxicity and Binding to Tubulin

  • Kim, Ja-Hong;Sohn, Sung-Ho;Hong, Sun-Wan
    • Journal of Photoscience
    • /
    • 제8권3_4호
    • /
    • pp.119-121
    • /
    • 2001
  • Three-Dimensional Quantitative Structure-Activity Relationship(QSAR) has been investigated over 67 flavonoids to correlate and predict GI$\sub$50/ values. The partial least-squares(PLS) model was performed to calculate the activity of each derivatives, and this was compared with the actual value. The results of the cross-validated(${\gamma}$$^2$=0.997) values show that cytotoxic activities play an important role which is in good agreement with the observed GI$\sub$50/ values.

  • PDF

Classification and Regression Tree Analysis for Molecular Descriptor Selection and Binding Affinities Prediction of Imidazobenzodiazepines in Quantitative Structure-Activity Relationship Studies

  • Atabati, Morteza;Zarei, Kobra;Abdinasab, Esmaeil
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권11호
    • /
    • pp.2717-2722
    • /
    • 2009
  • The use of the classification and regression tree (CART) methodology was studied in a quantitative structure-activity relationship (QSAR) context on a data set consisting of the binding affinities of 39 imidazobenzodiazepines for the α1 benzodiazepine receptor. The 3-D structures of these compounds were optimized using HyperChem software with semiempirical AM1 optimization method. After optimization a set of 1481 zero-to three-dimentional descriptors was calculated for each molecule in the data set. The response (dependent variable) in the tree model consisted of the binding affinities of drugs. Three descriptors (two topological and one 3D-Morse descriptors) were applied in the final tree structure to describe the binding affinities. The mean relative error percent for the data set is 3.20%, compared with a previous model with mean relative error percent of 6.63%. To evaluate the predictive power of CART cross validation method was also performed.

Quantitative Structure-Activity Relationships for Radical Scavenging Activities of Flavonoid Compounds by GA-MLR Technique

  • Om, Ae-Son;Ryu, Jae-Chun;Kim, Jae-Hyoun
    • Molecular & Cellular Toxicology
    • /
    • 제4권2호
    • /
    • pp.170-176
    • /
    • 2008
  • The quantitative structure-activity relationship (QSAR) of a set of 35 flavonoid compounds presenting antioxidant activity was established by means of Genetic Algorithm-Multiple Linear Regression (GA-MLR) technique. Four-parametric models for two sets of data, the 1,1-diphenyl-2-picryl hydrazyl (DPPH) radical scavenging activity $(R^2=0.788,\;Q^2_{cv}=0.699\;and\;Q^2_{ext}=0.577)$ and scavenging activity of reactive oxgen species (ROS) induced by $H_2O_2 (R^=0.829,\;Q^2_{cv}=0.754\;and\;Q^2_{ext}=0.573)$ were obtained with low external predictive ability on a mass basis, respectively. Each model gave some different mechanistic aspects of the flavonoid compounds tested in terms of the radical scavenging activity. Topological charge, H-bonding complex and deprotonation processes were likely to be involved in the radical scavenging activity.