• 제목/요약/키워드: Quantitative parameters

검색결과 1,130건 처리시간 0.027초

전자회절을 이용한 격자상수의 측정 정확도 향상 (Accuracy Improvement of Lattice Parameters Measured from Electron Diffraction Data)

  • 이상길;송경;김진규
    • Applied Microscopy
    • /
    • 제41권1호
    • /
    • pp.75-79
    • /
    • 2011
  • For quantitative analysis of nano-crystal structure, we reported the accuracy improvement method of lattice parameters measured from electron diffraction. For calculation of Au lattice parameters used as a standard crystal structure, it was considered two different acquisition methods (detector and enegy-filter) and three different calculation methods (conventional, least-square and regression fit). As a result, the measurement reliability could be enhanced by using CCD camera which gives higher performance, while energy-filtering did not affect the improvement the camera constant accuracy. Also, the accuracy of lattice parameters could be improved up to $10^{-4}$ order by regression fitting with correction formula. Finally, it is expected that the combination of regression fitting and intensity extraction from energy-filtered precession electron diffraction gives a solution of quantitative structure analysis for unknown nano-crystals.

Inference for exponentiated Weibull distribution under constant stress partially accelerated life tests with multiple censored

  • Nassr, Said G.;Elharoun, Neema M.
    • Communications for Statistical Applications and Methods
    • /
    • 제26권2호
    • /
    • pp.131-148
    • /
    • 2019
  • Constant stress partially accelerated life tests are studied according to exponentiated Weibull distribution. Grounded on multiple censoring, the maximum likelihood estimators are determined in connection with unknown distribution parameters and accelerated factor. The confidence intervals of the unknown parameters and acceleration factor are constructed for large sample size. However, it is not possible to obtain the Bayes estimates in plain form, so we apply a Markov chain Monte Carlo method to deal with this issue, which permits us to create a credible interval of the associated parameters. Finally, based on constant stress partially accelerated life tests scheme with exponentiated Weibull distribution under multiple censoring, the illustrative example and the simulation results are used to investigate the maximum likelihood, and Bayesian estimates of the unknown parameters.

Quantitative assessment of image artifacts from root filling materials on CBCT scans made using several exposure parameters

  • Rabelo, Katharina Alves;Cavalcanti, Yuri Wanderley;de Oliveira Pinto, Martina Gerlane;Melo, Saulo Leonardo Sousa;Campos, Paulo Sergio Flores;de Andrade Freitas Oliveira, Luciana Soares;de Melo, Daniela Pita
    • Imaging Science in Dentistry
    • /
    • 제47권3호
    • /
    • pp.189-197
    • /
    • 2017
  • Purpose: To quantify artifacts from different root filling materials in cone-beam computed tomography (CBCT) images acquired using different exposure parameters. Materials and Methods: Fifteen single-rooted teeth were scanned using 8 different exposure protocols with 3 different filling materials and once without filling material as a control group. Artifact quantification was performed by a trained observer who made measurements in the central axial slice of all acquired images in a fixed region of interest using ImageJ. Hyperdense artifacts, hypodense artifacts, and the remaining tooth area were identified, and the percentages of hyperdense and hypodense artifacts, remaining tooth area, and tooth area affected by the artifacts were calculated. Artifacts were analyzed qualitatively by 2 observers using the following scores: absence (0), moderate presence (1), and high presence (2) for hypodense halos, hypodense lines, and hyperdense lines. Two-way ANOVA and the post-hoc Tukey test were used for quantitative and qualitative artifact analysis. The Dunnet test was also used for qualitative analysis. The significance level was set at P<.05. Results: There were no significant interactions among the exposure parameters in the quantitative or qualitative analysis. Significant differences were observed among the studied filling materials in all quantitative analyses. In the qualitative analyses, all materials differed from the control group in terms of hypodense and hyperdense lines (P<.05). Fiberglass posts did not differ statistically from the control group in terms of hypodense halos(P>.05). Conclusion: Different exposure parameters did not affect the objective or subjective observations of artifacts in CBCT images; however, the filling materials used in endodontic restorations did affect both types of assessments.

Iodine Quantification on Spectral Detector-Based Dual-Energy CT Enterography: Correlation with Crohn's Disease Activity Index and External Validation

  • Kim, Yeon Soo;Kim, Se Hyung;Ryu, Hwa Sung;Han, Joon Koo
    • Korean Journal of Radiology
    • /
    • 제19권6호
    • /
    • pp.1077-1088
    • /
    • 2018
  • Objective: To correlate CT parameters on detector-based dual-energy CT enterography (DECTE) with Crohn's disease activity index (CDAI) and externally validate quantitative CT parameters. Materials and Methods: Thirty-nine patients with CD were retrospectively enrolled. Two radiologists reviewed DECTE images by consensus for qualitative and quantitative CT features. CT attenuation and iodine concentration for the diseased bowel were also measured. Univariate statistical tests were used to evaluate whether there was a significant difference in CTE features between remission and active groups, on the basis of the CDAI score. Pearson's correlation test and multiple linear regression analyses were used to assess the correlation between quantitative CT parameters and CDAI. For external validation, an additional 33 consecutive patients were recruited. The correlation and concordance rate were calculated between real and estimated CDAI. Results: There were significant differences between remission and active groups in the bowel enhancement pattern, subjective degree of enhancement, mesenteric fat infiltration, comb sign, and obstruction (p < 0.05). Significant correlations were found between CDAI and quantitative CT parameters, including number of lesions (correlation coefficient, r = 0.573), bowel wall thickness (r = 0.477), iodine concentration (r = 0.744), and relative degree of enhancement (r = 0.541; p < 0.05). Iodine concentration remained the sole independent variable associated with CDAI in multivariate analysis (p = 0.001). The linear regression equation for CDAI (y) and iodine concentration (x) was y = 53.549x + 55.111. For validation patients, a significant correlation (r = 0.925; p < 0.001) and high concordance rate (87.9%, 29/33) were observed between real and estimated CDAIs. Conclusion: Iodine concentration, measured on detector-based DECTE, represents a convenient and reproducible biomarker to monitor disease activity in CD.

Combination of Quantitative Parameters of Shear Wave Elastography and Superb Microvascular Imaging to Evaluate Breast Masses

  • Eun Ji Lee;Yun-Woo Chang
    • Korean Journal of Radiology
    • /
    • 제21권9호
    • /
    • pp.1045-1054
    • /
    • 2020
  • Objective: This study aimed to evaluate the diagnostic value of combining the quantitative parameters of shear wave elastography (SWE) and superb microvascular imaging (SMI) to breast ultrasound (US) to differentiate between benign and malignant breast masses. Materials and Methods: A total of 200 pathologically confirmed breast lesions in 192 patients were retrospectively reviewed using breast US with B-mode imaging, SWE, and SMI. Breast masses were assessed based on the breast imaging reporting and data system (BI-RADS) and quantitative parameters using the maximum elasticity (Emax) and ratio (Eratio) in SWE and the vascular index in SMI (SMIVI). The area under the receiver operating characteristic curve (AUC) value, sensitivity, specificity, accuracy, negative predictive value, and positive predictive value of B-mode alone versus the combination of B-mode US with SWE or SMI of both parameters in differentiating between benign and malignant breast masses was compared, respectively. Hypothetical performances of selective downgrading of BI-RADS category 4a (set 1) and both upgrading of category 3 and downgrading of category 4a (set 2) were calculated. Results: Emax with a cutoff value of 86.45 kPa had the highest AUC value compared to Eratio of 3.57 or SMIVI of 3.35%. In set 1, the combination of B-mode with Emax or SMIVI had a significantly higher AUC value (0.829 and 0.778, respectively) than B-mode alone (0.719) (p < 0.001 and p = 0.047, respectively). B-mode US with the addition of Emax, Eratio, and SMIVI had the best diagnostic performance of AUC value (0.849). The accuracy and specificity increased significantly from 68.0% to 84.0% (p < 0.001) and from 46.1% to 79.1% (p < 0.001), respectively, and the sensitivity decreased from 97.6% to 90.6% without statistical loss (p = 0.199). Conclusion: Combining all quantitative values of SWE and SMI with B-mode US improved the diagnostic performance in differentiating between benign and malignant breast lesions.

Biomedical Applications of Stereoscopy for Three-Dimensional Surface Reconstruction in Scanning Electron Microscopes

  • Kim, Ki Woo
    • Applied Microscopy
    • /
    • 제46권2호
    • /
    • pp.71-75
    • /
    • 2016
  • The scanning electron microscope (SEM) offers two-dimensional (2D) micrographs of three-dimensional (3D) objects due to its inherent operating mechanisms. To overcome this limitation, other devices have been used for quantitative morphological analysis. Many efforts have been made on the applications of software-based approaches to 3D reconstruction and measurements by SEM. Based on the acquisition of two stereo images, a multi-view technique consists of two parts: (i) geometric calibration and (ii) image matching. Quantitative morphological parameters such as height and depth could be nondestructively measured by SEM combined with special software programs. It is also possible to obtain conventional surface parameters such as roughness and volume of biomedical specimens through 3D SEM surface reconstruction. There is growing evidence that conventional 2D SEM without special electron detectors can be transformed to 3D SEM for quantitative measurements in biomedical research.

Hologram Quantitative Structure Activity Relationship (HQSAR) Study of Mutagen X

  • Cho, Seung-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권1호
    • /
    • pp.85-90
    • /
    • 2005
  • MX and its analogs are synthesized and modeled by quantitative structure activity relationship (QSAR) study including comparative molecular field analysis (CoMFA). As a result, factors affecting this class of compounds have been found to be steric and electrostatic effects. Because hologram quantitative structure activity relationship (HQSAR) technique is based on the 2-dimensional descriptors, this is free of ambiguity of conformational selection and molecular alignment. In this study we tried to include all the data available from the literature, and modeled with the HQSAR technique. Among the parameters affecting fragmentation, connectivity was the most important one for the whole compounds, giving good statistics. Considering additional parameters such as bond specification only slightly improved the model. Therefore connectivity has been found to be the most appropriate to explain the mutagenicity for this class of compounds.

철도차량의 구매 요구사항에 포함되는 RAMS 특성값에 관한 연구 (A study on RAMS parameters in the Procurement requirement for rolling stock)

  • 정인수;김종운;이강원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 춘계학술대회 논문집
    • /
    • pp.780-788
    • /
    • 2008
  • As a railway is receiving attention as an environment-friendly transportation mode, many high speed, inter-city and urban railway are constructed and remodeled in the world. With this trend, railway RAMS was included in the international standard IEC 62278 in 2002. RAMS activity in domestic market is also increased with this international trend. However, IEC 62278 does not describe the methodology of substantial contents like how reliability target is set although it can be used as an overall guideline when RAMS requirements are included in the purchase specification. That is because RAMS requirements should be set with the specific railway condition. It is required to fully understand the meaning of railway RAMS parameters and apply those correspond to the specific railway system and environment condition especially when a quantitative RAMS requirement is set. In this study, the meaning and characteristics of RAMS parameters applicable to the development of quantitative RAMS requirement of rolling stock is described. And the basic concept of RAMS and the definition of failure that IEC 62278 describes is modified and suggested in order to make more suitable to the development of quantitative RAMS requirement.

  • PDF

Quantitative risk assessment for wellbore stability analysis using different failure criteria

  • Noohnejad, Alireza;Ahangari, Kaveh;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • 제24권3호
    • /
    • pp.281-293
    • /
    • 2021
  • Uncertainties in geomechanical input parameters which mainly related to inappropriate data acquisition and estimation due to lack of sufficient calibration information, have led wellbore instability not yet to be fully understood or addressed. This paper demonstrates a workflow of employing Quantitative Risk Assessment technique, considering these uncertainties in terms of rock properties, pore pressure and in-situ stresses to makes it possible to survey not just the likelihood of accomplishing a desired level of wellbore stability at a specific mud pressure, but also the influence of the uncertainty in each input parameter on the wellbore stability. This probabilistic methodology in conjunction with Monte Carlo numerical modeling techniques was applied to a case study of a well. The response surfaces analysis provides a measure of the effects of uncertainties in each input parameter on the predicted mud pressure from three widely used failure criteria, thereby provides a key measurement for data acquisition in the future wells to reduce the uncertainty. The results pointed out that the mud pressure is tremendously sensitive to UCS and SHmax which emphasize the significance of reliable determinations of these two parameters for safe drilling. On the other hand, the predicted safe mud window from Mogi-Coulomb is the widest while the Hoek-Brown is the narrowest and comparing the anticipated collapse failures from the failure criteria and breakouts observations from caliper data, indicates that Hoek-Brown overestimate the minimum mud weight to avoid breakouts while Mogi-Coulomb criterion give better forecast according to real observations.

Prediction of Pulmonary Function in Patients with Chronic Obstructive Pulmonary Disease: Correlation with Quantitative CT Parameters

  • Hyun Jung Koo;Sang Min Lee;Joon Beom Seo;Sang Min Lee;Namkug Kim;Sang Young Oh;Jae Seung Lee;Yeon-Mok Oh
    • Korean Journal of Radiology
    • /
    • 제20권4호
    • /
    • pp.683-692
    • /
    • 2019
  • Objective: We aimed to evaluate correlations between computed tomography (CT) parameters and pulmonary function test (PFT) parameters according to disease severity in patients with chronic obstructive pulmonary disease (COPD), and to determine whether CT parameters can be used to predict PFT indices. Materials and Methods: A total of 370 patients with COPD were grouped based on disease severity according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD) I-IV criteria. Emphysema index (EI), air-trapping index, and airway parameters such as the square root of wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10) were measured using automatic segmentation software. Clinical characteristics including PFT results and quantitative CT parameters according to GOLD criteria were compared using ANOVA. The correlations between CT parameters and PFT indices, including the ratio of forced expiratory volume in one second to forced vital capacity (FEV1/FVC) and FEV1, were assessed. To evaluate whether CT parameters can be used to predict PFT indices, multiple linear regression analyses were performed for all patients, Group 1 (GOLD I and II), and Group 2 (GOLD III and IV). Results: Pulmonary function deteriorated with increase in disease severity according to the GOLD criteria (p < 0.001). Parenchymal attenuation parameters were significantly worse in patients with higher GOLD stages (P < 0.001), and Pi10 was highest for patients with GOLD III (4.41 ± 0.94 mm). Airway parameters were nonlinearly correlated with PFT results, and Pi10 demonstrated mild correlation with FEV1/FVC in patients with GOLD II and III (r = 0.16, p = 0.06 and r = 0.21, p = 0.04, respectively). Parenchymal attenuation parameters, airway parameters, EI, and Pi10 were identified as predictors of FEV1/FVC for the entire study sample and for Group 1 (R2 = 0.38 and 0.22, respectively; p < 0.001). However, only parenchymal attenuation parameter, EI, was identified as a predictor of FEV1/FVC for Group 2 (R2 = 0.37, p < 0.001). Similar results were obtained for FEV1. Conclusion: Airway and parenchymal attenuation parameters are independent predictors of pulmonary function in patients with mild COPD, whereas parenchymal attenuation parameters are dominant independent predictors of pulmonary function in patients with severe COPD.