• Title/Summary/Keyword: Quantitative parameters

Search Result 1,116, Processing Time 0.029 seconds

Evaluation of Prospective Pulmonary Function Change for Pulmonary Resection Using Quantitative Perfusion Lung Scan (폐절제술시 정량 폐관류스캔을 이용한 폐기능 변화 예견에 대한 평가)

  • 김용진
    • Journal of Chest Surgery
    • /
    • v.19 no.2
    • /
    • pp.188-196
    • /
    • 1986
  • Spirometry and regional function studies using 99m-Technetium were performed preoperatively to predict postoperative pulmonary function change in 34 patients who had various pulmonary resectional procedures at the Department of Thoracic and Cardiovascular Surgery, Seoul National University Hospital. Between two months and fourteen months postoperation all the patients were reinvestigated with spirometry and clinical examination to evaluate their functional respiratory status. The postoperative obtained values, especially forced vital capacity [FVC] and forced expiratory volume in one second [FEV1] among the other parameters were compared with the postoperative predicted values. Estimated values of FVC and FEV1 derived from preoperative spirometry and quantitative perfusion lung scan correlated well with the measured postoperative values. The linear regression line derived from correlation between postoperative estimated[X] and postoperative measured[Y] values of FVC and FEV1 in all patients are as follows; 1. Y=0.76x + 0.39 in correlation of FVC [r=0.91] 2. Y=0.88x + 0.17 in correlation of FEV1 [r=0.96],br> This method of estimation was one of the best methods of predicting postoperative pulmonary function change and valuable in determining the extent of safe resection and postoperative prognosis to a poor risk patient with chronic obstructive lung disease.

  • PDF

A Quantitative Analysis of GHG Emissions from the Korean Offshore Large Scale Fisheries Using an LCA Method (전과정 평가에 의한 한국 근해 대형어업의 온실가스 배출량 분석)

  • Lee, Ji-Hoon;Lee, Chun-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.44 no.4
    • /
    • pp.383-389
    • /
    • 2011
  • The negative fishery factors from an environmental perspective are greenhouse gas emissions due to high fossil fuel use, destruction of underwater ecosystems by bottom trawls, a reduction in resources by fishing, and damage to ecosystem diversity. In particular, the greenhouse gas emissions from fisheries is an important issue based on the Cancun meeting in Mexico in 1992 and the Kyoto protocol in 2005. However, no investigations on the GHG emissions from Korean fisheries have been conducted. Therefore, a quantitative analysis of GHG emissions from the Korean fishery industry is needed as a first step to identify a method to reduce GHG emissions from fisheries. The purpose of this study was to investigate the degree of GHG emitted from fisheries. Here, we calculated the GHG emissions from four main Korean fisheries(i.e., large trawls, large purse seines, Danish seines, and bottom pair trawls) using the life cycle assessment(LCA) method. The system boundary and input parameters for each process level were defined for LCA analysis. The fuel use coefficient of each fishery was also calculated. The GHG emissions from edible seafood were calculated considering different consuming areas. The results will be helpful to understand GHG emissions from Korean fisheries.

Electron Energy Distribution function in CH4 by MCS-BEq (MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수)

  • Kim, Sang-Nam
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.1
    • /
    • pp.18-22
    • /
    • 2013
  • This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Review of Research Topics on Abdominal Examination (복진(腹診)에 대한 국내 연구동향 분석 및 연구방향 제안)

  • Kim, Jihye;Park, Jeong Hwan;Kim, Keun Ho
    • The Journal of Korean Medicine
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2016
  • Objectives: The abdominal examination is a diagnosis method for determining a morbid condition of the chest and abdomen by touching and pressing. This study reviewed research trends concerning the abdominal examination and suggested of future research directions for quantification of abdominal examination. Methods: A systematic literature search was carried out for relevant articles published between 2000 and 2016 in five databases such as Korean studies Information Service System(KISS), Oriental Medicine Advanced Searching Integrated System(OASIS), DataBase Periodical Information Academic (DBpia), National Digital Science Library and PubMed based on the Keywords 'abdominal examination'. Results: 128 articles were collected for analysis. Overview on the abdominal examination based on selected 17 articles. Then selected articles have been reclassified by diseases of clinical research and parameters for diagnosis of abdominal examination. Conclusions: Taken together, instrument for quantitative evaluation of abdomen characteristic fit to the traditional Korean Medicine have not yet developed. It is suggested that in order to dominate the market about abdominal examination in advance, more concern should be paid to establishing appropriate development of quantitative criteria and instrument. This review will help researcher to systematically understand and to develop Korean medical device as globally competitive device.

A Quantitative Analysis of Greenhouse Gas Emissions from the Danish Seine Fishery using Life Cycle Assessment (전과정평가 방법에 의한 외끌이 대형기선저인망 어업의 온실 가스 배출량의 정량적 분석)

  • Lee, Jihoon;Lee, Chun-Woo;Kim, Jieun
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.2
    • /
    • pp.200-206
    • /
    • 2015
  • The fishing industry has a negative effect on the environment due to greenhouse gas (GHG) emissions with the high use of fossil fuels, the destruction of underwater ecosystems by bottom trawls, reduction in resources by fishing, and altered ecosystem diversity. GHG emissions from fisheries were discussed at the Canc$\acute{u}$n meeting in Mexico in 1992 and are part of the Kyoto protocol in 2005. However, few studies have investigated the GHG emissions from Korean fisheries. To find a way to reduce GHG emissions from fisheries, quantitative analysis of GHG emissions from the Korean fishery industry is needed. Therefore, this study investigated the GHG emissions from the Korean Danish seine fishery using the life cycle assessment (LCA) method. The system boundary and input parameters for each process level are defined for the LCA analysis. The fuel-use coefficient of the fishery is also calculated. The GHG emissions from the representative fish caught by the Danish seine fishery are considered and the GHG emissions for the edible weight of fishes are calculated, considering consumption in different areas and different slaughtering processes. The results will help to understand the GHG emissions from Korean fisheries.

QSPR Studies on Impact Sensitivities of High Energy Density Molecules

  • Kim, Chan-Kyung;Cho, Soo-Gyeong;Li, Jun;Kim, Chang-Kon;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4341-4346
    • /
    • 2011
  • Impact sensitivity, one of the most important screening factors for novel high energy density materials (HEDMs), was predicted by use of quantitative structure-property relationship (QSPR) based on the electrostatic potential (ESP) values calculated on the van der Waals molecular surface (MSEP). Among various 3D descriptors derived from MSEP, we utilized total and positive variance of MSEP, and devised a new QSPR equation by combining three other parameters. We employed 37 HEDMs bearing a benzene scaffold and nitro substituents, which were also utilized by Rice and Hare. All the molecular structures were optimized at the B3LYP/6-31G(d) level of theory and confirmed as minima by the frequency calculations. Our new QSPR equation provided a good result to predict the impact sensitivities of the molecules in the training set including zwitterionic molecules.

Alternating Pressure Profile Characteristics of Powered Pressure Ulcer Preventing Devices (동력형 욕창예방제품의 교대부양 압력 프로파 특성)

  • Won, Byeong-Hee;Song, Chang-Seop
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.639-646
    • /
    • 2010
  • The APAM's quantitative effectiveness and comparative study in preventing and treating pressure ulcer has not been sufficiently evaluated mainly because of uncertainty of pressure load input and lack of interpretation of dynamic perfusion recovery characteristics of soft tissue. The purpose of this paper was to quantify and analyze the alternating pressure characteristics of APAM as a preventive measure for pressure ulcers. To quantify the alternating load to human body, we introduced alternating pressure profile concept and developed parametric model of the profile. Regarding pressure level and cycle time, 3 global and 7 local periodic parameters were used to define the profile such as light, standard, typical and heavy duty profile shape. Pressure impulse ratio of light duty is the lowest but pressure fluctuation is significantly high. For the same duty shape, contact conditions are changed with alternating cycle time and more dramatically in shorter alternating cycle time conditions. We can conclude that if we use shorter alternating cycle time on APAM's operation we can get more positive effects regarding to inflated contact time condition. We proposed the quantitative methods on tissue viability study of external loading by simultaneous measurement of interface pressure and tissue perfusion with proper alternating pressure profile conditions.

Hippocampus Segmentation and Classification in Alzheimer's Disease and Mild Cognitive Impairment Applied on MR Images

  • Madusanka, Nuwan;Choi, Yu Yong;Choi, Kyu Yeong;Lee, Kun Ho;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.2
    • /
    • pp.205-215
    • /
    • 2017
  • The brain magnetic resonance images (MRI) is an important imaging biomarker in Alzheimer's disease (AD) as the cerebral atrophy has been shown to strongly associate with cognitive symptoms. The decrease of volume estimates in different structures of the medial temporal lobe related to memory correlates with the decline of cognitive functions in neurodegenerative diseases. During the past decades several methods have been developed for quantifying the disease related atrophy of hippocampus from MRI. Special effort has been dedicated to separate AD and mild cognitive impairment (MCI) related modifications from normal aging for the purpose of early detection and prediction. We trained a multi-class support vector machine (SVM) with probabilistic outputs on a sample (n = 58) of 20 normal controls (NC), 19 individuals with MCI, and 19 individuals with AD. The model was then applied to the cross-validation of same data set which no labels were known and the predictions. This study presents data on the association between MRI quantitative parameters of hippocampus and its quantitative structural changes examination use on the classification of the diseases.

Segmentation and Visualization of Left Ventricle in MR Cardiac Images (자기공명심장영상의 좌심실 분할과 가시화)

  • 정성택;신일홍;권민정;박현욱
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.2
    • /
    • pp.101-107
    • /
    • 2002
  • This paper presents a segmentation algorithm to extract endocardial contour and epicardial contour of left ventricle in MR Cardiac images. The algorithm is based on a generalized gradient vector flow(GGVF) snake and a prediction of initial contour(PIC). Especially. the proposed algorithm uses physical characteristics of endocardial and epicardial contours, cross profile correlation matching(CPCM), and a mixed interpolation model. In the experiment, the proposed method is applied to short axis MR cardiac image set, which are obtained by Siemens, Medinus, and GE MRI Systems. The experimental results show that the proposed algorithm can extract acceptable epicardial and endocardial walls. We calculate quantitative parameters from the segmented results, which are displayed graphically. The segmented left vents role is visualized volumetrically by surface rendering. The proposed algorithm is implemented on Windows environment using Visual C ++.

Introducing Strategy of Cool Roofs based on Comparative Evaluation of Foreign Cases (해외 사례분석을 통한 Cool Roof의 도입 방안)

  • Choi, Jin-Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.6
    • /
    • pp.591-605
    • /
    • 2010
  • Cool roofs are currently being emerged as one of important mechanism to save energy in relation to the building. This paper reviews worldwide experiences (USA, Japan and EU etc) for the potential benefits cool roofs offer in relation to building energy saving for comparison purposes. It is confirmed that there is a significant potential to the energy saving by introducing the cool roof in a Korean climate because of similarity in terms of HDD (Heating Degree Day) and CDD (Cooling Degree Day) as those countries reviewed. Such a comparative study highlights that the type of measurements performed and the quantitative parameters reported from the countries should be standardized in Korean context in order to implement further comparable experiments for scientifically sound investigations. It is anticipated that this research output could be used as a valuable reference in implementing a Nation-wide cool roofing strategy in the central and local governments since a suitable technical, more objective direction has been proposed based on the measured, fully quantitative performance of the involved components of a cool roof system in the global context. From this critical review, a very important step has been made concerning the practicality of cool roof in Korean context. Ultimately, the suggestion in this paper will greatly contribute to opening new possibilities for introducing cool roof in this country, proposed as an initial aim of this paper.