DOI QR코드

DOI QR Code

Electron Energy Distribution function in CH4 by MCS-BEq

MCS-BEq에 의한 CH4기체에서 전자에너지 분포함수

  • 김상남 (인천대학교 전기공학과)
  • Received : 2013.01.06
  • Accepted : 2013.02.23
  • Published : 2013.03.01

Abstract

This paper describes the information for quantitative simulation of weakly ionized plasma. We must grasp the meaning of the plasma state condition to utilize engineering application and to understand materials of plasma state. Using quantitative simulations of weakly ionized plasma, we can analyze gas characteristic. In this paper, the electron transport characteristic in $CH_4$ has been analysed over the E/N range 0.1~300[Td], at the 300[$_{\circ}\;K$] by the two term approximation Boltzmann equation method and Monte Carlo Simulation. Boltzmann equation method has also been used to predict swarm parameter using the same cross sections as input. The behavior of electron has been calculated to give swarm parameter for the electron energy distribution function has been analysed in $CH_4$ at E/N=10, 100 for a case of the equilibrium region in the mean energy. A set of electron collision cross section has been assembled and used in Monte Carlo simulation to predict values of swarm parameters. The result of Boltzmann equation and Monte Carlo Simulation has been compared with experimental data by Ohmori, Lucas and Carter. The swarm parameter from the swarm study are expected to sever as a critical test of current theories of low energy scattering by atoms and molecules.

Keywords

References

  1. 山本,生田, "モンテカルロシミユレーツヨンによるCF4カ スの 電子衝突 斷面績", 電氣學會 放電硏究會資料, ED-92-101, pp.71-80, 1992.
  2. 菅野卓雄 "半導體 プラズマ プロセス技術"産業圖書), pp. 38-50, 1993.
  3. L. E. Kline, and W. E. Bies. "Measurements of swarm parameters and derived electron collision cross sections in methane", J. Appl. Phys. 65. 3311-3323. 1989. https://doi.org/10.1063/1.342642
  4. Y Ohmori, K Kitamori, H Tagashira " Boltzmann equation analysis of electron swarm behavior in Methane" The Institute of Physics. 437-455 1986
  5. Y Ohmori, K Kitamori, H Tagashira "Boltzmann equation analysis of electron swarm behavior in Methane" The Institute of Physics. 437-455 1986
  6. Rubinstein, L. "Simulation and Monte Carlo Method", John Wiley, New York. 1981
  7. H. Itoh and T.Musha "Monte Carlo Calculations of Motions in Helium", J.Phys. soc. Japan, Vol.15, No. 9, pp.1675-1680, 1960. https://doi.org/10.1143/JPSJ.15.1675
  8. R.W.L. Thomas, and W.R.L. Thomas, "Monte Carlo Simulation of electrical discharge in gases", J. Phys. B. Vol.2, pp.562-570, 1969. https://doi.org/10.1088/0022-3700/2/5/309
  9. モンテカルロ法とシミユレ-シヨン(培風館),1989.
  10. Huxley L G H and Crompton R W"The Diffusion and Drift of Electrons in gases"(New York:Wiley) 1974
  11. S. R. Hunter, J. G. Carter. "Electron transport measurements in methane using an improved pulsed Townsend technique" J. Appl. Phys.60. 1986
  12. G. N. Haddad "Low Energy Electron Collision Cross Sections for Methane" Aust. J. phys. 38. 677-85. 1985 https://doi.org/10.1071/PH850677
  13. M. G. Curtis, Isobel C. Walker and K. J. Mathieson, "Electron Swarm Characteristic Energies(Dr/$\mu$) in Tetrafluoro methane(CF4) at Low E/N", IOP Publishing Ltd, pp.1271-1274, 1988.
  14. 松村, 伊達, 田頭, 電氣學會放電硏究會資料 ED-92-97, pp.31-39, 1992.
  15. Philip E. Luft, "Description of a Backward prolongation program for computing transport coefficients", JILA, Information center report, No.19, 1975.
  16. Y Ohmori, K Kitamori, H Tagashira "Boltzmann equation analysis of electron swarm behavior in Methane" The Institute of Physics. 437-455 1986
  17. S. A. J. Al-Amin and J. Lucas, "Electron swarm parameters in oxygen and methane", J. Phys. D:Appl. 18. pp. 1781-1794, 1985. https://doi.org/10.1088/0022-3727/18/9/009