• Title/Summary/Keyword: Quantitative PCR

Search Result 1,367, Processing Time 0.024 seconds

Rapid Identification of Vibrio vulnificus in Seawater by Real-Time Quantitative TaqMan PCR

  • Wang, Hye-Young;Lee, Geon-Hyoung
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.320-326
    • /
    • 2003
  • In order to identify Vibrio vulnificus in the Yellow Sea near Gunsan, Korea during the early and late summers, the efficiency of the real-time quantitative TaqMan PCR was compared to the efficiency of the conventional PCR and Biolog identification system^TM. Primers and a probe were designed from the hemolysin/cytolysin gene sequence of V. vulnificus strains. The number of positive detections by real-time quantitative TaqMan PCR, conventional PCR, and the Biolog identification system from seawater were 53 (36.8%), 36 (25%), and 10 strains (6.9%), respectively, among 144 samples collected from Yellow Sea near Gunsan, Korea. Thus, the detection method of the real-time quantitative TaqMan PCR assay was more effective in terms of accuracy than that of the conventional PCR and Biolog system. Therefore, our results showed that the real-time TaqMan probe and the primer set developed in this study can be applied successfully as a rapid screening tool for the detection of V. vulnificus.

Assessment of Korean Paddy Soil Microbial Community Structure by Use of Quantitative Real-time PCR Assays (한국의 논 토양 미생물 다양성 분석을 위한 Quantitative Real-time PCR의 응용)

  • Choe, Myeong-Eun;Lee, In-Jung;Shin, Jae-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.367-376
    • /
    • 2011
  • BACKGROUND: In order to develop effective assessment method for Korean paddy soil microbial community structure, reliable genomic DNA extraction method from paddy soil and quantitative real-time PCR (qRT-PCR) method are needed to establish METHODS AND RESULTS: Out of six conventional soil genomic DNA extraction methods, anion exchange resin purification method was turn to be the most reliable. Various PCR primers for distinguishing five bacterial phylum (${\alpha}$-Proteobacteria, ${\beta}$-Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes), all bacteria, and all fungi were tested. Various qRT-PCR temperature conditions were also tested by repeating experiment. Finally, both genomic DNA extraction and qRT-PCR methods for paddy soil were well established. CONCLUSION: Quantitative real-time PCR (qRT-PCR) method to assess paddy soil microbial community was established.

A new cell-direct quantitative PCR based method to monitor viable genetically modified Escherichia coli

  • Yang Qin;Bo Qu;Bumkyu Lee
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.847-859
    • /
    • 2022
  • The development and commercialization of industrial genetically modified (GM) organisms is actively progressing worldwide, highlighting an increased need for improved safety management protocols. We sought to establish an environmental monitoring method, using real-time polymerase chain reaction (PCR) and propidium monoazide (PMA) treatment to develop a quantitative detection protocol for living GM microorganisms. We developed a duplex TaqMan quantitative PCR (qPCR) assay to simultaneously detect the selectable antibiotic gene, ampicillin (AmpR), and the single-copy Escherichia coli taxon-specific gene, D-1-deoxyxylulose 5-phosphate synthase (dxs), using a direct cell suspension culture. We identified viable engineered E. coli cells by performing qPCR on PMA-treated cells. The theoretical cell density (true copy numbers) calculated from mean quantification cycle (Cq) values of PMA-qPCR showed a bias of 7.71% from the colony-forming unit (CFU), which was within ±25% of the acceptance criteria of the European Network of GMO Laboratories (ENGL). PMA-qPCR to detect AmpR and dxs was highly sensitive and was able to detect target genes from a 10,000-fold (10-4) diluted cell suspension, with a limit of detection at 95% confidence (LOD95%) of 134 viable E. coli cells. Compared to DNA-based qPCR methods, the cell suspension direct PMA-qPCR analysis provides reliable results and is a quick and accurate method to monitor living GM E. coli cells that can potentially be released into the environment.

Comparison of digital PCR platforms using the molecular marker

  • Cherl-Joon Lee;Wonseok Shin;Minsik Song;Seung-Shick Shin;Yujun Park;Kornsorn Srikulnath;Dong Hee Kim;Kyudong Han
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.24.1-24.7
    • /
    • 2023
  • Assays of clinical diagnosis and species identification using molecular markers are performed according to a quantitative method in consideration of sensitivity, cost, speed, convenience, and specificity. However, typical polymerase chain reaction (PCR) assay is difficult to quantify and have various limitations. In addition, to perform quantitative analysis with the quantitative real-time PCR (qRT-PCR) equipment, a standard curve or normalization using reference genes is essential. Within the last a decade, previous studies have reported that the digital PCR (dPCR) assay, a third-generation PCR, can be applied in various fields by overcoming the shortcomings of typical PCR and qRT-PCR assays. We selected Stilla Naica System (Stilla Technologies), Droplet Digital PCR Technology (Bio-Rad), and Lab on an Array Digital Real-Time PCR analyzer system (OPTOLANE) for comparative analysis among the various droplet digital PCR platforms currently in use commercially. Our previous study discovered a molecular marker that can distinguish Hanwoo species (Korean native cattle) using Hanwoo-specific genomic structural variation. Here, we report the pros and cons of the operation of each dPCR platform from various perspectives using this species identification marker. In conclusion, we hope that this study will help researchers to select suitable dPCR platforms according to their purpose and resources.

Direct and Quantitative Analysis of Salmonella enterica Serovar Typhimurium Using Real-Time PCR from Artificially Contaminated Chicken Meat

  • Park, Hee-Jin;Kim, Hyun-Joong;Park, Si-Hong;Shin, Eun-Gyeong;Kim, Jae-Hwan;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.8
    • /
    • pp.1453-1458
    • /
    • 2008
  • For quantitative PCR assay of Salmonella enterica serovar Typhimurium in food samples, a real-time PCR method was developed, based on DNA genome equivalent. Specific primers and probe designed based on the STM4497 gene of S. Typhimurium LT2 showed the specificity to S. Typhimurium. Threshold cycle (Ct) values of real-time PCR were obtained from a quantitative standard curve with genomic DNA of Salmonella Typhimurium. In addition, the recovery of S. Typhimurium inoculated artificially to chicken samples with $4.5{\times}10^5$ to 4.5 CFU/ml was evaluated by using real-time PCR and plate-count methods. Result showed that the number of cells calculated from the real-time PCR method had good correlation with that of the plate-count method. This real-time PCR method could be applicable to the detection and quantification of S. Typhimurium in food samples.

Developing species-specific quantitative real-time polymerase chain reaction primers for detecting Lautropia mirabilis

  • Park, Soon-Nang;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.46 no.3
    • /
    • pp.140-145
    • /
    • 2021
  • This study aimed to develop Lautropia mirabilis-specific quantitative real-time polymerase chain reaction (qPCR) primers based on the sequence of DNA-directed RNA polymerase subunit beta gene. The PrimerSelect program was used in designing of the qPCR primers, RTLam-F4 and RTLam-R3. The specificity of the qPCR primers were performed by conventional PCR with 37 strains of 37 oral bacterial species, including L. mirabilis. The sensitivity of the primers was determined by qPCR with the serial dilution of purified genomic DNA of L. mirabilis KCOM 3484, ranged from 4 ng to 4 fg. The data showed that the qPCR primers could detect only L. mirabilis strains and as little as 40 fg of genome DNA of L. mirabilis KCOM 3484. These results indicate that this qPCR primer pair (RTLam-F4/RTLam-R3) may be useful for species-specific detection of L. mirabilis in epidemiological studies of oral bacterial infectious diseases such as periodontal disease.

Rapidly quantitative detection of Nosema ceranae in honeybees using ultra-rapid real-time quantitative PCR

  • Truong, A-Tai;Sevin, Sedat;Kim, Seonmi;Yoo, Mi-Sun;Cho, Yun Sang;Yoon, Byoungsu
    • Journal of Veterinary Science
    • /
    • v.22 no.3
    • /
    • pp.40.1-40.12
    • /
    • 2021
  • Background: The microsporidian parasite Nosema ceranae is a global problem in honeybee populations and is known to cause winter mortality. A sensitive and rapid tool for stable quantitative detection is necessary to establish further research related to the diagnosis, prevention, and treatment of this pathogen. Objectives: The present study aimed to develop a quantitative method that incorporates ultra-rapid real-time quantitative polymerase chain reaction (UR-qPCR) for the rapid enumeration of N. ceranae in infected bees. Methods: A procedure for UR-qPCR detection of N. ceranae was developed, and the advantages of molecular detection were evaluated in comparison with microscopic enumeration. Results: UR-qPCR was more sensitive than microscopic enumeration for detecting two copies of N. ceranae DNA and 24 spores per bee. Meanwhile, the limit of detection by microscopy was 2.40 × 104 spores/bee, and the stable detection level was ≥ 2.40 × 105 spores/bee. The results of N. ceranae calculations from the infected honeybees and purified spores by UR-qPCR showed that the DNA copy number was approximately 8-fold higher than the spore count. Additionally, honeybees infected with N. ceranae with 2.74 × 104 copies of N. ceranae DNA were incapable of detection by microscopy. The results of quantitative analysis using UR-qPCR were accomplished within 20 min. Conclusions: UR-qPCR is expected to be the most rapid molecular method for Nosema detection and has been developed for diagnosing nosemosis at low levels of infection.

Quantitative evaluation of the molecular marker using droplet digital PCR

  • Shin, Wonseok;Kim, Haneul;Oh, Dong-Yep;Kim, Dong Hee;Han, Kyudong
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.4.1-4.6
    • /
    • 2020
  • Transposable elements (TEs) constitute approximately half of Bovine genome. They can be a powerful species-specific marker without regression mutations by the structure variation (SV) at the time of genomic evolution. In a previous study, we identified the Hanwoo-specific SV that was generated by a TE-association deletion event using traditional PCR method and Sanger sequencing validation. It could be used as a molecular marker to distinguish different cattle breeds (i.e., Hanwoo vs. Holstein). However, PCR is defective with various final copy quantifications from every sample. Thus, we applied to the droplet digital PCR (ddPCR) platform for accurate quantitative detection of the Hanwoo-specific SV. Although samples have low allele frequency variation within Hanwoo population, ddPCR could perform high sensitive detection with absolute quantification. We aimed to use ddPCR for more accurate quantification than PCR. We suggest that the ddPCR platform is applicable for the quantitative evaluation of molecular markers.

Quantitative Analysis of Genetically Modified Soybean in Processed Foods Using Real-time PCR (실시간중합효소연쇄반응을 이용한 유전자변형 콩 가공식품의 정량분석)

  • Min, Dong-Myung;Kim, Myo-Young;Jung, Soon-Il;Heo, Mun-Seok;Kim, Jin-Kuk;Kim, Hae-Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.5
    • /
    • pp.723-727
    • /
    • 2004
  • Qualitative and quantitative PCR methods were performed to examine detection and quantitation of epsps inserted into genetically modified soybean (GMS) in processed foods, soy milk, tofu, and biji (soybean curd residue). Using PCR amplification to produce two (121 and 330 bp) epsps in GMS, detection limits of GMS in soy milk, tofu, and biji containing 0.01% GMS were measured. For quantitative detection, test samples containing 1, 3, and 5% GMS were measured by real-time PCR method. Results show real-time PCR method is applicable to detect GMS quantitatively in processed foods.

Monitoring 4-Chlorobiphenyl-Degrading Bacteria in Soil Microcosms by Competitive Quantitative PCR

  • Lee, Soo-Youn;Song, Min-Sup;You, Kyung-Man;Kim, Bae-Hoon;Bang, Seong-Ho;Lee, In-Soo;Kim, Chi-Kyung;Park, Yong-Keun
    • Journal of Microbiology
    • /
    • v.40 no.4
    • /
    • pp.274-281
    • /
    • 2002
  • The competitive quantitative PCR method targeting pcbC gene was developed for monitoring 4-chlorobiphenyl(4CB)-degrading bacteria, Pseudomonas sp. strain DJ-12, in soil microcosms. The method involves extraction of DNA from soil contaminated with 4CB, PCR amplification of a pcbC gene fragment from the introduced strain with a set of strain-specific primers, and quantification of the elec-trophoresed PCR product by densitometry. To test the adequacy of the method, Pseudomonas sp. strain DJ-12 was introduced into both contaminated and non-contaminated soil microcosms amended with 4CB. Pseudomonas sp. strain DJ-12 was monitored and quantified by a competitive quantitative PCR in comparison with 4CB degradation and the result was compared to those obtained by using the conventional cultivation method. We successfully detected and monitored 4CB-degrading bacteria in each microcosm and found a significant linear relationship between the number of 4CB-degrading bacteria and the capacity for 4CB biodegradation. The results of DNA spiking and cell-spreading experiments suggest that this competitive quantitative PCR method targeting the pcbC gene for monitoring 4CB- degrading bacteria appears to be rapid, sensitive and more suitable than the microbiological approach in estimating the capacity of 4CB biodegradation in environmental samples.