• Title/Summary/Keyword: Quantitative MRI

Search Result 174, Processing Time 0.021 seconds

An Assessment of the Usefulness of Time of Flight in Magnetic Resonance Angiography Covering the Aortic Arch

  • Yoo, Yeong-Jun;Choi, Sung-Hyun;Dong, Kyung-Rae;Ji, Yun-Sang;Choi, Ji-Won;Ryu, Jae-Kwang
    • Journal of Radiation Industry
    • /
    • v.12 no.4
    • /
    • pp.325-332
    • /
    • 2018
  • Carotid angiography covering the aortic arch includes contrast-enhanced magnetic resonance angiography (CEA), which is applied to a large region and usually employs contrast media. However, the use of contrast media can be dangerous in infants, pregnant women, and patients with chronic renal failure (CRF). Follow-up patients informed of a lesion may also want to avoid constant exposure to contrast media. We aimed to apply time-of-flight (TOF) angiography to a large region and compare its usefulness with that of CEA. Ten patients (mean age, 58 years; range, 45~75 years) who visited our hospital for magnetic resonance angiography (MRA) participated in this study. A 3.0 Tesla Achieva magnetic resonance imaging (MRI) system (Philips, Netherland) and the SENSE NeuroVascular 16-channel coil were employed for both methods. Both methods were applied simultaneously to the same patient. Three TOF stacks were connected to cover the aortic arch through the circle of Willis, and CEA was applied in the same manner. For the quantitative assessment, the acquired images were used to set the regions of interest (ROIs) in the common carotid artery (CCA) bifurcation, internal carotid artery, external carotid artery, middle cerebral artery, and vertebral artery, and to obtain the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) for the soft tissues. Three radiologists and one radiological resident performed the qualitative assessment on a 5-point scale - 1 point, "very bad"; 2 points, "bad"; 3 points, "average"; 4 points, "good"; and 5 points, "very good" - with regard to 4 items: (1) sharpness, (2) distortion, (3) vein contamination, and (4) expression of peripheral vessels. For the quantitative assessment, we estimated the mean SNR and CNR in each of the 5 ROIs. In general, the mean SNR was higher in TOF angiography (166.1, 205.2, 154.39, 172.23, and 161.95) than in CEA(92.05, 95.43, 84.76, 73.69, and 88.3). Both methods had a similar mean CNR: 67.62, 106.71, 55.9, 73.74, and 63.46 for TOF angiography, and 67.82, 71.19, 60.52, 49.45, and 64.07 for CEA. In all ROIs, the mean SNR was statistically significant (p<0.05), whereas the mean CNR was insignificant (p>0.05). The mean values of TOF angiography and CEA for each item in the qualitative assessment were 4.2 and 4.28, respectively for item 1; 2.93 and 4.55, respectively, for item 2; 4.6 and 3.13, respectively, for item 3; and 2.88 and 4.65, respectively, for item 4. Therefore, TOF angiography had a higher mean for item 3, and CEA had a higher mean for items 2 and 4; there was no significant difference between the two methods for item 1. The results for item 1 were statistically insignificant (p>0.05), whereas the results for items 2~4 were statistically significant (p<0.05). Both methods have advantages and disadvantages and they complement each other. However, CEA is usually applied to a large region covering the aortic arch. Time-of-flight angiography may be useful for people such as infants, pregnant women, CRF patients, and followup patients for whom the use of contrast media can be dangerous or unnecessary, depending on the circumstance.

Ferucarbotran-Enhanced Hepatic MRI at 3T Unit: Quantitative and Qualitative Comparison of Fast Breath-hold Imaging Sequences (간의 3T 자기공명영상에서 초상자성산화철 조영증강 급속호흡정지영상기법들간의 양적 및 질적 비교평가)

  • Cho, Kyung-Eun;Yu, Jeong-Sik;Chung, Jae-Joon;Kim, Joo-Hee;Kim, Ki-Whang
    • Investigative Magnetic Resonance Imaging
    • /
    • v.14 no.1
    • /
    • pp.31-40
    • /
    • 2010
  • Purpose : To compare the relative values of various fast breath-hold imaging sequences for superparamagnetic iron-oxide (SPIO)-enhanced hepatic MRI for the assessment of solid focal lesions with a 3T MRI unit. Materials and Methods : 102 consecutive patients with one or more solid malignant hepatic lesions were evaluated by spoiled gradient echo (GRE) sequences with three different echo times (2.4 msec [GRE_2.4], 5.8 msec [GRE_5.8], and 10 msec [GRE_10]) for $T2^*$-weighted imaging in addition to T2-weighted turbo spin echo (TSE) sequence following intravenous SPIO injection. Image qualities of the hepatic contour, vascular landmarks and artifacts were rated by two independent readers using a four-point scale. For quantitative analysis, contrast-to-noise ratio (CNR) was measured in 170 solid focal lesions larger than 1 cm (107 hepatocellular carcinomas, nine cholangiocarcinomas and 54 metastases). Results : GRE_5.8 showed the highest mean points for hepatic contour, vascular anatomy and imaging artifact presence among all of the subjected sequences (p<0.001) and was comparable (p=0.414) with GRE_10 with regard to lesion conspicuity. The mean CNRs were significantly higher (p<0.001) in the following order: GRE_10 ($24.4{\pm}14.5$), GRE_5.8 ($14.8{\pm}9.4$), TSE ($9.7{\pm}6.3$), and GRE_2.4 ($7.9{\pm}6.4$). The mean CNRs of CCCs and metastases were higher than those of HCCs for all imaging sequences (p<0.05). Conclusion : Regarding overall performances, GRE using a moderate echo time of 5.8 msec can provide the most reliable data among the various fast breath-hold SPIO-enhanced hepatic MRI sequences at 3T unit despite the lower CNR of GRE_5.8 compared to that of GRE_10.

Retrospective Evaluation of Discrepancies between Radiological and Pathological Size of Hepatocellular Carcinoma Masses

  • Tian, Fei;Wu, Jian-Xiong;Rong, Wei-Qi;Wang, Li-Ming;Wu, Fan;Yu, Wei-Bo;An, Song-Lin;Liu, Fa-Qiang;Feng, Li;Liu, Yun-He
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9487-9494
    • /
    • 2014
  • Background: The size of a hepatic neoplasm is critical for staging, prognosis and selection of appropriate treatment. Our study aimed to compare the radiological size of solid hepatocellular carcinoma (HCC) masses on magnetic resonance imaging (MRI) with the pathological size in a Chinese population, and to elucidate discrepancies. Materials and Methods: A total of 178 consecutive patients diagnosed with HCC who underwent curative hepatic resection after enhanced MRI between July 2010 and October 2013 were retrospectively identified and analyzed. Pathological data of the whole removed tumors wereassessed and differences between radiological and pathological tumor size were identified. All patients were restaged using a modified Tumor-Node-Metastasis (TNM) staging system postoperatively according to the maximum diameter alteration. The lesions were classified as hypo-staged, iso-staged or hyper-staged for qualitative assessment. In the quantitative analysis, the relative pre and postoperative tumor size contrast ratio ($%{\Delta}size$) was also computed according to size intervals. In addition, the relationship between radiological and pathological tumor diameter variation and histologic grade was analyzed. Results: Pathological examination showed 85 (47.8%) patients were overestimated, 82 (46.1%) patients underestimated, while accurate measurement by MRI was found in 11 (6.2%) patients. Among the total subjects, 14 (7.9%) patients were hypo-staged and 15 (8.4%) were hyper-staged post-operatively. Accuracy of MRI for calculation and characterized staging was related to the lesion size, ranging from 83.1% to 87.4% (<2cm to ${\geq}5cm$, p=0.328) and from 62.5% to 89.1% (cT1 to cT4, p=0.006), respectively. Overall, MRI misjudged pathological size by 6.0 mm (p=0.588 ), and the greatest difference was observed in tumors <2cm (3.6 mm, $%{\Delta}size=16.9%$, p=0.028). No statistically significant difference was observed for moderately differentiated HCC (5.5mm, p=0.781). However, for well differentiated and poorly differentiated cases, radiographic tumor maximum diameter was significantly larger than the pathological maximum diameter by 3.15 mm and underestimated by 4.51 mm, respectively (p=0.034 and 0.020). Conclusions: A preoperative HCC tumor size measurement using MRI can provide relatively acceptable accuracy but may give rise to discrepancy in tumors in a certain size range or histologic grade. In pathological well differentiated subjects, the pathological tumor size was significantly overestimated, but underestimated in poorly differentiated HCC. The difference between radiological and pathological tumor size was greatest for tumors <2 cm. For some HCC patients, the size difference may have implications for the decision of resection, transplantation, ablation, or arterially directed therapy, and should be considered in staging or selecting the appropriate treatment tactics.

Effect of Temperature on T1 and T2 Relaxation Time in 3.0T MRI (3.0T MRI에서 온도변화가 T1 및 T2 이완시간에 미치는 영향)

  • Kim, Ho-Hyun;Kwon, Soon-Yong;Lim, Woo-Teak;Kang, Chung-Hwan;Kim, Kyung-Soo;Kim, Soon-Bae;Baek, Moon-Young
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.15 no.2
    • /
    • pp.63-68
    • /
    • 2013
  • Purpose : The relaxation times of tissue in MRI depend on strength of magnetic field, morphology of nuclear, viscosity, size of molecules and temperature. This study intended to analyze quantitatively that materials' temperatures have effects on T1 and T2 relaxation times without changing of other conditions. Materials and Methods : The equipment was used MAGNETOM SKYRA of 3.0T(SIEMENS, Erlagen, Germany), 32 channel spine coil and Gd-DTPA water concentration phantom. To find out T1 relaxation time, Inversion Recovery Spin Echo sequences were used at 50, 400, 1100, 2500 ms of TI. To find out T2 relaxation time, Multi Echo Spin Echo sequences were used at 30, 60, 90, 120, 150, 180, 210, 240, 270 ms of TE. This experiment was scanned with 5 steps from 25 to $45^{\circ}C$. next, using MRmap(Messroghli, BMC Medical Imaging, 2012) T1 and T2 relaxation times were mapped. on the Piview STAR v5.0(Infinitt, Seoul, Korea) 5 steps were measured as the same ROI, and then mean values were calculated. Correlation between the temperatures and relaxation times were analyzed by SPSS(version 17.0, Chicago, IL, USA). Results : According to increase of temperatures, T1 relaxation times were $214.39{\pm}0.25$, $236.02{\pm}0.87$, $267.47{\pm}0.48$, $299.44{\pm}0.64$, $330.19{\pm}1.72$ ms. T2 relaxation times were $180.17{\pm}0.27$, $197.17{\pm}0.44$, $217.92{\pm}0.39$, $239.89{\pm}0.53$, $257.40{\pm}1.77$ ms. With the correlation analysis, the correlation coefficients of T1 and T2 relaxation times were statistically significant at 0.998 and 0.999 (p< 0.05). Conclusion : T1 and T2 relaxation times are increased as temperature of tissue goes up. In conclusion, we suggest to recognize errors of relaxation time caused local temperature's differences, and consider external factors as well in the quantitative analysis of relaxation time or clinical tests.

  • PDF

Field Map Estimation for Effective Fat Quantification at High Field MRI (고자장 자기공명영상에서 효율적인 지방 정량화를 위한 필드 맵 측정 기술)

  • Eun, Sung-Jong;Whangbo, Taeg-Keun
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.11
    • /
    • pp.558-574
    • /
    • 2014
  • The number of fatty liver patients is sharply growing due to the rapid increase in the incidence of metabolic syndrome, which can lead to diseases such as abdominal obesity, hypertension, diabetes, and hyperlipidemia. Early diagnosis requires examinations using magnetic resonance imaging (MRI), wherein quantitative analyses are implemented through a professional water-fat separation method in many cases, as the intensity values of the areas of interest and non-interest are considerably similar or the same. However, such separation method generates inaccurate results in high magnetic fields, where the inhomogeneity of the fields increases. To overcome the limits of such conventional fat quantification methods, this paper proposes a field map estimation method that is effective in high magnetic fields. This method generates field maps through echo images that are obtained using the existing IDEAL sequences, and considers the wrapping degree of the field maps. Then clustering is performed to separate calibration areas, the least square fits based on the region growing method schema of the separated calibration areas, and the histograms are adjusted to separate the water from the fats. In experiment results, our proposed method had a superior fat detection rate of an average of 86.4%, compared to the ideal method with an average of 61.5% and Yu's method with an average of 62.6%. In addition, it was confirmed that the proposed method had a more accurate water detection rate of 98.4% on the average than the 88.6% average of the fat saturation method.

Contrast-enhanced Magnetic Resonance Imaging of Brain Metastases at 7.0T versus 1.5T: A Preliminary Result

  • Paek, Sun Ha;Kim, Jhi-Hoon;Choi, Sung-Hong;Yoon, Tae-Jin;Son, Young Don;Kim, Dong Gyu;Cho, Zang-Hee;Sohn, Chul-Ho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2015
  • Purpose: To compare the depiction of brain metastases on contrast-enhanced images with 7.0 tesla (T) and at 1.5T MRI. Materials and Methods: Four consecutive patients with brain metastases were scanned on 7.0T whole-body scanner and 1.5T MRI. A 3D T1-weighted gradient echo sequence (3D T1-GRE) at 1.5T (voxel size = $0.9{\times}0.9{\times}1.5mm^3$ after double-dose, gadoterate meglumine, Gd-DOTA) was compared to a 7.0T 3D T1-GRE sequence (voxel size = $0.4{\times}0.4{\times}0.8mm^3$, single-dose Gd-DOTA) in four patients after a 5 minute delay. The number of contrast-enhancing metastases in MPRAGE images was compared in each patient by two radiologists in consensus. We measured contrast ratio of enhancing brain metastases and white matter in 1.5T and 7.0T. Results: In all four patients 7.0T 3D T1-GRE images after single-dose Gd-DOTA and 1.5T after double-dose Gd-DOTA depicted 11 brain metastases equally. In the quantitative analysis of contrast ratios of enhancing brain metastases and white matter, the 1.5T 3D T1-GRE after double-dose showed an increased contrast ratio compared to 7.0T 3D T1-GRE after single-dose ($0.961{\pm}0.571$ versus $0.885{\pm}0.494$; n = 11 metastases). But this difference was not statistically significant (P = 0.711). Conclusion: Our preliminary results indicate that 7.0T single-dose Gd-enhanced images were not different to 1.5T double-dose Gd-enhanced images for the detection of brain metastases.

Comparison of Pulsed Arterial Spin Labeling with Conventional Perfusion MRI in Moyamoya Disease Patient (모야모야병에서 펄스 동맥 스핀 표지 영상과 고식적인 관류자기공명영상의 비교)

  • Jo, Gwang-Ho;Bae, Sung-Jin
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.427-433
    • /
    • 2007
  • This study was conducted to investigate the usefulness of PASL image technique through visual and quantitative assessment by dividing CBF image, conventional perfusion magnetic resonance image, anterior cerebral artery, middle cerebral artery and posterior cerebral artery into 6 territories both right and left in moyamoya disease. In visual assessment, the scope of decreased perfusion in the PASL CBF image and conventional perfusion MR CBF image agreed with the position of deficiency in the MR image. The quantitative assessment, showed that the scope and position of decreased perfusion accord with both in the PASL CBF image and the existing conventional perfusion MR CBF image but the assessment of measuring the quantity of perfusion according to signal intensity showed a little difference.

  • PDF

A Comparative Quantitative Analysis of IDEAL (Iterative Decomposition of Water and Fat with Echo Asymmetry and Least Squares Estimation) and CHESS (Chemical Shift Selection Suppression) Technique in 3.0T Musculoskeletal MRI

  • Kim, Myoung-Hoon;Cho, Jae-Hwan;Shin, Seong-Gyu;Dong, Kyung-Rae;Chung, Woon-Kwan;Park, Tae-Hyun;Ahn, Jae-Ouk;Park, Cheol-Soo;Jang, Hyon-Chol;Kim, Yoon-Shin
    • Journal of Magnetics
    • /
    • v.17 no.2
    • /
    • pp.145-152
    • /
    • 2012
  • Patients who underwent hip arthroplasty using the conventional fat suppression technique (CHESS) and a new technique (IDEAL) were compared quantitatively to assess the effectiveness and usefulness of the IDEAL technique. In 20 patients who underwent hip arthroplasty from March 2009 to December 2010, fat suppression T2 and T1 weighted images were obtained on a 3.0T MR scanner using the CHESS and IDEAL techniques. The level of distortion in the area of interest, the level of the development of susceptibility artifacts, and homogeneous fat suppression were analyzed from the acquired images. Quantitative analysis revealed the IDEAL technique to produce a lower level of image distortion caused by the development of susceptibility artifacts due to metal on the acquired images compared to the CHESS technique. Qualitative analysis of the anterior area revealed the IDEAL technique to generate fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the middle area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique but with homogeneous fat suppression. In the posterior area, the IDEAL technique generated fewer susceptibility artifacts than the CHESS technique. Fat suppression was not statistically different, and the two techniques achieved homogeneous fat suppression. In conclusion, the IDEAL technique generated fewer susceptibility artifacts caused by metals and less image distortion than the CHESS technique. In addition, homogeneous fat suppression was feasible. In conclusion, the IDEAL technique generates high quality images, and can provide good information for diagnosis.

Quantitative Measurements of 3-D Imaging with Computed Tomography using Human Skull Phantom

  • Kim, Dong-Wook;Kim, Hee-Joung;Haijo Jung;Soonil Hong;Yoo, Young-Il;Kim, Dong-Hyeon;Kim, Kee-Deog
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.506-508
    • /
    • 2002
  • As an advancement of medical imaging modalities and analyzing software with multi-function, active researches to acquire high contrast and high resolution image being done. In recently, development of medical imaging modalities like as Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) is aiming to display anatomical structure more accuracy and faster. Thus, one of the important areas in CT today is the use of CT scanner for the quantitative evaluation of 3-D reconstruction images from 2-D tomographic images. In CT system, the effective slice thickness and the quality of 3-D reconstructed image will be influenced by imaging acquisition parameters (e.g. pitch and scan mode). In diagnosis and surgical planning, the accurate distance measurements of 3-D anatomical structures play an important role and the accuracy of distance measurements will depend on the acquisition parameters such as slice thickness, pitch, and scan mode. The skull phantom was scanned with SDCT for various acquisition parameters and acquisition slice thicknesses were 3 and 5 mm, and reconstruction intervals were 1, 2, and 3 mm to each pitch. 3-D visualizations and distance measurements were performed with PC based 3-D rendering and analyzing software. Results showed that the image quality and the measurement accuracy of 3-D SDCT images are independent to the reconstruction intervals and pitches.

  • PDF

Quantitative Evaluation of Regional Cerebral Blood Flow by Visual Stimulation in $^{99m}Tc-HMPAO$ Brain SPECT ($^{99m}Tc-HMPAO$ 뇌 SPECT에서 시각자극에 의한 국소 뇌 혈류변화의 정량적 검증)

  • Juh, Ra-Hyeong;Suh, Tae-Suk;Kwark, Chul-Eun;Choe, Bo-Young;Lee, Hyoung-Koo;Chung, Yong-An;Kim, Sung-Hoon;Chung, Soo-Kyo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.3
    • /
    • pp.166-176
    • /
    • 2002
  • Purpose: The purpose of this study is to investigate the effects of visual activation and quantitative analysis of regional cerebral blood flow. Visual activation was known to increase regional cerebral blood flow in the visual cortex in occipital lobe. We evaluated that change in the distribution of $^{99m}Tc-HMPAO$ (Hexamethyl propylene amine oxime) to reflect in regional cerebral blood flow. Materials and Methods: The six volunteers were injected with 925 MBq (mean ages: 26.75 years, n=6, 3men, 3women) underwent MRI and $^{99m}Tc-HMPAO$ SPECT during a rest state with closed eyes and visual stimulated with 8 Hz LED. We delineate the legion of interest and calculated the mean count per voxel in each of the fifteen slices to quantitative analysis. The ROI to whole brain ratio and regional index was calculated pixel to pixel subtraction visual non-activation image from visual activation image and constructed brain map using a statistical parameter map (SPM99). Results: The mean regional cerebral blood flow was increased due to visual stimulation. The increase rate of the mean regional cerebral blood flow which of the activation region in primary visual cortex of occipital lobe was $32.50{\pm}5.67%$. The significant activation sites using a statistical parameter of brain constructed a rendering image and image fusion with SPECT and MRI. Conclusion: Visual activation was revealed significant increase through quantitative analysis in visual cortex. Activation region was certified in Talairach coordinate and primary visual cortex (Ba17),visual association area (Ba18,19) of Brodmann.