• Title/Summary/Keyword: Quantitative CT

Search Result 339, Processing Time 0.029 seconds

Quantitative Feasibility Evaluation of 11C-Methionine Positron Emission Tomography Images in Gamma Knife Radiosurgery : Phantom-Based Study and Clinical Application

  • Lim, Sa-Hoe;Jung, Tae-Young;Jung, Shin;Kim, In-Young;Moon, Kyung-Sub;Kwon, Seong-Young;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.476-486
    • /
    • 2019
  • Objective : The functional information of $^{11}C$-methionine positron emission tomography (MET-PET) images can be applied for Gamma knife radiosurgery (GKR) and its image quality may affect defining the tumor. This study conducted the phantom-based evaluation for geometric accuracy and functional characteristic of diagnostic MET-PET image co-registered with stereotactic image in Leksell $GammaPlan^{(R)}$ (LGP) and also investigated clinical application of these images in metastatic brain tumors. Methods : Two types of cylindrical acrylic phantoms fabricated in-house were used for this study : the phantom with an array-shaped axial rod insert and the phantom with different sized tube indicators. The phantoms were mounted on the stereotactic frame and scanned using computed tomography (CT), magnetic resonance imaging (MRI), and PET system. Three-dimensional coordinate values on co-registered MET-PET images were compared with those on stereotactic CT image in LGP. MET uptake values of different sized indicators inside phantom were evaluated. We also evaluated the CT and MRI co-registered stereotactic MET-PET images with MR-enhancing volume and PET-metabolic tumor volume (MTV) in 14 metastatic brain tumors. Results : Imaging distortion of MET-PET was maintained stable at less than approximately 3% on mean value. There was no statistical difference in the geometric accuracy according to co-registered reference stereotactic images. In functional characteristic study for MET-PET image, the indicator on the lateral side of the phantom exhibited higher uptake than that on the medial side. This effect decreased as the size of the object increased. In 14 metastatic tumors, the median matching percentage between MR-enhancing volume and PET-MTV was 36.8% on PET/MR fusion images and 39.9% on PET/CT fusion images. Conclusion : The geometric accuracy of the diagnostic MET-PET co-registered with stereotactic MR in LGP is acceptable on phantom-based study. However, the MET-PET images could the limitations in providing exact stereotactic information in clinical study.

Median Modified Wiener Filter for Noise Reduction in Computed Tomographic Image using Simulated Male Adult Human Phantom (시뮬레이션된 성인 남성 인체모형 팬텀을 이용한 전산화단층촬영 에서의 노이즈 제거를 위한 Median Modified Wiener 필터)

  • Ju, Sunguk;An, Byungheon;Kang, Seong-Hyeon;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.1
    • /
    • pp.21-28
    • /
    • 2021
  • Computed tomography (CT) has the problem of having more radiation exposure compared to other radiographic apparatus. There is a low-dose imaging technique for reducing exposure, but it has a disadvantage of increasing noise in the image. To compensate for this, various noise reduction algorithms have been developed that improve image quality while reducing the exposure dose of patients, of which the median modified Wiener filter (MMWF) algorithm that can be effectively applied to CT devices with excellent time resolution has been presented. The purpose of this study is to optimize the mask size of MMWF algorithm and to see the excellence of noise reduction of MMWF algorithm for existing algorithms. After applying the MMWF algorithm with each mask sizes set from the MASH phantom abdominal images acquired using the MATLAB program, which includes Gaussian noise added, and compared the values of root mean square error (RMSE), peak signal-to-noise ratio (PSNR), coefficient correlation (CC), and universal image quality index (UQI). The results showed that RMSE value was the lowest and PSNR, CC and UQI values were the highest in the 5 x 5 mask size. In addition, comparing Gaussian filter, median filter, Wiener filter, and MMWF with RMSE, PSNR, CC, and UQI by applying the optimized mask size. As a result, the most improved RMSE, PSNR, CC, and UQI values were showed in MMWF algorithms.

Image Evaluation by Metallic Hip Prosthesis in Computed Tomography Examination (컴퓨터단층촬영검사에서 고관절 삽입물에 의한 영상평가)

  • Min, Byung-In;Im, In-Chul
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.3
    • /
    • pp.281-288
    • /
    • 2022
  • In this study, four algorithms (Soft, Standard, Detail, Bone) were used for general CT scan (Before MAR) images and MAR (After MAR) images for patients with metal implants inserted into the hip joint. was applied to compare and analyze Noise, SNR, and CNR to find out the optimal algorithm for quantitative evaluation. As the analysis method, Image J program, which can calculate image analysis and area and pixel values on the image reconstructed with four algorithms, was used. In order to obtain Noise, SNR, and CNR, the HU mean value and HU SD value were obtained by designating the bone (ischium) closest to the metal implant in the image for the measurement site, and the background noise was the surrounding muscle. The region of interest (ROI) was equally designated as 15 × 15 mm in consideration of the size of the bone, and the values of SNR and CNR were calculated according to the given equation. As a result, for noise, After MAR and Soft algorithms showed the lowest noise, and SNR and CNR showed the highest for Before MAR and Soft algorithms. Therefore, the soft algorithm is judged to be the most appropriate algorithm for metal implant hip joint CT.

Linearity Estimation of PET/CT Scanner in List Mode Acquisition (List Mode에서 PET/CT Scanner의 직선성 평가)

  • Choi, Hyun-Jun;Kim, Byung-Jin;Ito, Mikiko;Lee, Hong-Jae;Kim, Jin-Ui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.86-90
    • /
    • 2012
  • Purpose: Quantification of myocardial blood flow (MBF) using dynamic PET imaging has the potential to assess coronary artery disease. Rb-82 plays a key role in the clinical assessment of myocardial perfusion using PET. However, MBF could be overestimated due to the underestimation of left ventricular input function in the beginning of the acquisition when the scanner has non-linearity between count rate and activity concentration due to the scanner dead-time. Therefore, in this study, we evaluated the count rate linearity as a function of the activity concentration in PET data acquired in list mode. Materials & methods: A cylindrical phantom (diameter, 12 cm length, 10.5 cm) filled with 296 MBq F-18 solution and 800 mL of water was used to estimate the linearity of the Biograph 40 True Point PET/CT scanner. PET data was acquired with 10 min per frame of 1 bed duration in list mode for different activity concentration levels in 7 half-lives. The images were reconstructed by OSEM and FBP algorithms. Prompt, net true and random counts of PET data according to the activity concentration were measured. Total and background counts were measured by drawing ROI on the phantom images and linearity was measured using background correction. Results: The prompt count rates in list mode were linearly increased proportionally to the activity concentration. At a low activity concentration (<30 kBq/mL), the prompt net true and random count rates were increased with the activity concentration. At a high activity concentration (>30 kBq/mL), the increasing rate of the prompt net true rates was slightly decreased while the increasing rate of random counts was increased. There was no difference in the image intensity linearity between OSEM and FBP algorithms. Conclusion: The Biograph 40 True Point PET/CT scanner showed good linearity of count rate even at a high activity concentration (~370 kBq/mL).The result indicates that the scanner is useful for the quantitative analysis of data in heart dynamic studies using Rb-82, N-13, O-15 and F-18.

  • PDF

Definition of Tumor Volume Based on 18F-Fludeoxyglucose Positron Emission Tomography in Radiation Therapy for Liver Metastases: An Relational Analysis Study between Image Parameters and Image Segmentation Methods (간 전이 암 환자의 18F-FDG PET 기반 종양 영역 정의: 영상 인자와 자동 영상 분할 기법 간의 관계분석)

  • Kim, Heejin;Park, Seungwoo;Jung, Haijo;Kim, Mi-Sook;Yoo, Hyung Jun;Ji, Young Hoon;Yi, Chul-Young;Kim, Kum Bae
    • Progress in Medical Physics
    • /
    • v.24 no.2
    • /
    • pp.99-107
    • /
    • 2013
  • The surgical resection was occurred mainly in liver metastasis before the development of radiation therapy techniques. Recently, Radiation therapy is increased gradually due to the development of radiation dose delivery techniques. 18F-FDG PET image showed better sensitivity and specificity in liver metastasis detection. This image modality is important in the radiation treatment with planning CT for tumor delineation. In this study, we applied automatic image segmentation methods on PET image of liver metastasis and examined the impact of image factors on these methods. We selected the patients who were received the radiation therapy and 18F-FDG PET/CT in Korea Cancer Center Hospital from 2009 to 2012. Then, three kinds of image segmentation methods had been applied; The relative threshold method, the Gradient method and the region growing method. Based on these results, we performed statistical analysis in two directions. 1. comparison of GTV and image segmentation results. 2. performance of regression analysis for relation between image factor affecting image segmentation techniques. The mean volume of GTV was $60.9{\pm}65.9$ cc and the $GTV_{40%}$ was $22.43{\pm}35.27$ cc, and the $GTV_{50%}$ was $10.11{\pm}17.92$ cc, the $GTV_{RG}$ was $32.89{\pm}36.8$4 cc, the $GTV_{GD}$ was $30.34{\pm}35.77$ cc, respectively. The most similar segmentation method with the GTV result was the region growing method. For the quantitative analysis of the image factors which influenced on the region growing method, we used the standardized coefficient ${\beta}$, factors affecting the region growing method show GTV, $TumorSUV_{MAX/MIN}$, $SUV_{max}$, TBR in order. The result of the region growing (automatic segmentation) method showed the most similar result with the CT based GTV and the region growing method was affected by image factors. If we define the tumor volume by the auto image segmentation method which reflect the PET image parameters, more accurate and consistent tumor contouring can be done. And we can irradiate the optimized radiation dose to the cancer, ultimately.

Evaluation of Effective Dose in Dental Radiography (치과 방사선 검사에서 유효선량 평가)

  • Han, Su-Chul;Lee, Bo-Ram;Shin, Gwi-Soon;Choi, Jong-Hak;Park, Hyok;Park, Chang-Seo;Chang, Kye-Yong;Kim, Bo-Ram;Kim, You-Hyun
    • Journal of radiological science and technology
    • /
    • v.34 no.1
    • /
    • pp.27-33
    • /
    • 2011
  • Along with the developments of science technology, up-to-date medical radiation equipments are introduced. Those equipments has brought many progresses in diagnosing patients not only in the quantitative aspects but in the qualitative ones. Especially, in the case of dental radiography, patients can be exposed more than CT, cone beam computed tomography (CBCT). In this study, we used human phantom and TLD-100H to measure the organ dose in each dental radiography and computed the effective dose according to ICRP (International Committee for Radioactivity Prevention) 60, 103. We measured the effective dose to be 5.1 and $29.5{\mu}Sv$ in the panoramic radiography and 11.2 and $14.4{\mu}Sv$ in the cephalometric radiography respectively. We also executed the CBCT and CT test on the maxillaries and the mandibles and found the amounts of effective dose were 53.7, 209.6, 129, and $391.5{\mu}Sv$ respectively in the CBCT and $93.3{\mu}$, 139.5, 282.7 and $489.7{\mu}Sv$ in the CT test. Consequently, it was shown that the effective dose in the CBCT test was lower than one in the CT test, but was higher in both panoramic and cephalometric radiography.

CT-Derived Deep Learning-Based Quantification of Body Composition Associated with Disease Severity in Chronic Obstructive Pulmonary Disease (CT 기반 딥러닝을 이용한 만성 폐쇄성 폐질환의 체성분 정량화와 질병 중증도)

  • Jae Eun Song;So Hyeon Bak;Myoung-Nam Lim;Eun Ju Lee;Yoon Ki Cha;Hyun Jung Yoon;Woo Jin Kim
    • Journal of the Korean Society of Radiology
    • /
    • v.84 no.5
    • /
    • pp.1123-1133
    • /
    • 2023
  • Purpose Our study aimed to evaluate the association between automated quantified body composition on CT and pulmonary function or quantitative lung features in patients with chronic obstructive pulmonary disease (COPD). Materials and Methods A total of 290 patients with COPD were enrolled in this study. The volume of muscle and subcutaneous fat, area of muscle and subcutaneous fat at T12, and bone attenuation at T12 were obtained from chest CT using a deep learning-based body segmentation algorithm. Parametric response mapping-derived emphysema (PRMemph), PRM-derived functional small airway disease (PRMfSAD), and airway wall thickness (AWT)-Pi10 were quantitatively assessed. The association between body composition and outcomes was evaluated using Pearson's correlation analysis. Results The volume and area of muscle and subcutaneous fat were negatively associated with PRMemph and PRMfSAD (p < 0.05). Bone density at T12 was negatively associated with PRMemph (r = -0.1828, p = 0.002). The volume and area of subcutaneous fat and bone density at T12 were positively correlated with AWT-Pi10 (r = 0.1287, p = 0.030; r = 0.1668, p = 0.005; r = 0.1279, p = 0.031). However, muscle volume was negatively correlated with the AWT-Pi10 (r = -0.1966, p = 0.001). Muscle volume was significantly associated with pulmonary function (p < 0.001). Conclusion Body composition, automatically assessed using chest CT, is associated with the phenotype and severity of COPD.

PIV Measurement on Airflows in the Abnormal Nasal Cavity with the Adenoid Vegetation (아데노이드 비대증에 의한 비정상 비강 내 유동의 PIV해석)

  • Kim, Sung-Kyun;Son, Young-Rak
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.4
    • /
    • pp.518-523
    • /
    • 2003
  • Airflow in the nasal cavity of Korean adults is investigated experimentally by PIV measurement. Quantitative data for normal and abnormal nasal cavities with adenoid vegetation are obtained. The CBC PIV algorithm with window offset is used for PIV flow analysis. Average and RMS distributions are obtained for inspirational and expirational nasal airflows. Comparisons between western and Korean nasal airflows are appreciated. Due to the difference in geometry of the frontal part of nasal cavity, the flow near nares shows the difference. For the joint research on nasal deceases, PIV measurements of nasal airflow for nasal cavities with 50% and 70% adenoid vegetation are conducted for the first time. Comparisons in nasal airflows for both normal and abnormal cases are also appreciated.

Fracture Mechanical Study on the Charpy V-notch and Fatigue Crack Propagation 8ehavior of Rail Steels (레일강의 샬피거동 및 피로균열 성장거동에 관한 파괴역학적 고찰)

  • Kim, Sung Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.6
    • /
    • pp.1319-1327
    • /
    • 1994
  • Since fatigue cracks in rail can be the source of fractures and subsequent derailments, quantitative evaluation of the fatigue behavior and fracture properities due to the analysis results of laboratory test are drawn on the basis for predicting fatigue life and making a decision of safe inspection interval. Charpy V-notch and fracture toughness behavior were evaluated from the results of Charpy impact test. Fatigue test was performed by using CT type specimen under constant amplitude loading, and finally the effects of the following parameters; crack orientation, temperature, and stress ratio, on the fatigue crack growth behavior were studied.

  • PDF

Hybrid Block Coding of Medical Images Using the Characteristics of Human Visual System

  • Park, Kwang-Suk;Chee, Young-Joon
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.1
    • /
    • pp.57-62
    • /
    • 1994
  • The demand of image compression is increasing now for the integration of medical images into the hospital information system. Even though the quantitative distortion can be measured from the difference between original and reconstructed images, it doesn't include the nonlinear characteristics of human visual system. In this study, we have evaluated the nonlinear characteristics of human visual system and applied them to the compression of medical images. The distortion measures which reflect the characteristics of human visual system has been considered. This image compression procedure consists of coding scheme using JND (Just Noticeable Difference) curve, polynomial approximation and BTC (Block Truncation Coding). Results show that this method can be applied to CT images, scanned film images and other kinds of medical images with the compression ratio of 5-10:1 without any noticeable distortion.

  • PDF