• Title/Summary/Keyword: Quantile Mapping

Search Result 73, Processing Time 0.04 seconds

Prediction of sharp change of particulate matter in Seoul via quantile mapping

  • Jeongeun Lee;Seoncheol Park
    • Communications for Statistical Applications and Methods
    • /
    • v.30 no.3
    • /
    • pp.259-272
    • /
    • 2023
  • In this paper, we suggest a new method for the prediction of sharp changes in particulate matter (PM10) using quantile mapping. To predict the current PM10 density in Seoul, we consider PM10 and precipitation in Baengnyeong and Ganghwa monitoring stations observed a few hours before. For the PM10 distribution estimation, we use the extreme value mixture model, which is a combination of conventional probability distributions and the generalized Pareto distribution. Furthermore, we also consider a quantile generalized additive model (QGAM) for the relationship modeling between precipitation and PM10. To prove the validity of our proposed model, we conducted a simulation study and showed that the proposed method gives lower mean absolute differences. Real data analysis shows that the proposed method could give a more accurate prediction when there are sharp changes in PM10 in Seoul.

Bias Correction of RCP-based Future Extreme Precipitation using a Quantile Mapping Method ; for 20-Weather Stations of South Korea (분위사상법을 이용한 RCP 기반 미래 극한강수량 편의보정 ; 우리나라 20개 관측소를 대상으로)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.133-142
    • /
    • 2012
  • The objective of this study was to correct the bias of the Representative Concentration Pathways (RCP)-based future precipitation data using a quantile mapping method. This method was adopted to correct extreme values because it was designed to adjust simulated data using probability distribution function. The Generalized Extreme Value (GEV) distribution was used to fit distribution for precipitation data obtained from the Korea Meteorological Administration (KMA). The resolutions of precipitation data was 12.5 km in space and 3-hour in time. As the results of bias correction over the past 30 years (1976~2005), the annual precipitation was increased 16.3 % overall. And the results for 90 years (divided into 2011~2040, 2041~2070, 2071~2100) were that the future annual precipitation were increased 8.8 %, 9.6 %, 11.3 % respectively. It also had stronger correction effects on high value than low value. It was concluded that a quantile mapping appeared a good method of correcting extreme value.

Selection of Performance of Bias Correction using TOPSIS method (TOPSIS 방법을 이용한 편의 보정 방법 선정)

  • Song, Young Hoon;Chung, Eun Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.306-306
    • /
    • 2019
  • 전지구적 기온상승으로 인해 미래기후의 관한 연구가 중요시 되고 있다. 위와 같은 현상으로 인하여 다양한 기후변화 연구가 진행되고 있다. 미래기후 연구에는 GCM (General Circulation Model) 모의 결과가 이용된다. 격자 자료로 구성된 GCM은 연구 지점으로 지역적 상세화와 연구지역의 관측자료 사이의 편이 보정(bias correction)이 필수적이다. 위와 같은 근거로 편이 보정 방법의 선택은 매우 중요하며 편의 보정의 방법에 따라서 결과가 다르게 도출될 수 있다. 또한 국내외 연구에서는 다양한 상세화 기법과 편이 보정 기법을 분석 및 평가하는 연구가 진행되고 있으며, 편의 기법 중 대표적인 기법인 Quantile mapping과 Random Forest 기법이 있다. Quantile mapping 기법은 GCM의 과거 모의 데이터와의 편이 보정에 있어서 우수하게 나타났으나, GCM 데이터의 미래 예측 기간(2010년~2018년)까지의 데이터에서는 극한 강수를 정량적으로 분석 가능한 Random Forest 기법이 편이 보정 과정에서 성능이 우수할 것으로 판단된다. 본 연구에서는 우리나라 21개 관측소를 기준으로 총 4개의 GCM(GISS, CSIRO, CCSM4,MIROC5)의 과거 기간 자료(1970년~2005년)를 실제 관측소에서 관측된 강수량을 편의 보정하는 방법에 있어서 편의 보정 기법의 성능을 비교한 결과와 GCM 미래 예측 기간 자료(2010년~2018년)에서의 편의 보정 기법의 성능 결과를 비교하였다. 이를 토대로 편이 보정 기법의 결과를 6개의 평가지수를 이용하여 정량적으로 분석하였으며, 다기준의사결정기법인 TOPSIS(Technique for Order of Preference by Similarity to Ideal Solution)를 이용하여 편이 보정기법들의 성능에 있어서 우선순위를 선정하였다. 본 연구에서 편이 보정 방법으로 Quantile mapping 방법을 사용했으며, Quantile mapping의 기법으로는 비모수 변환법(non-parametric transformation)과 분포기반 변환법(distribution derived transformation)이 사용되었다. 또한 머신러닝 방법 중 하나인 Random Forest 방법을 동시에 사용하여 결과를 비교하였다. 또한 GCM 자료가 격자식으로 제공하고 있기 때문에 관측소 강수량도 공간적으로 환산하여야 하는데, 본 연구에서는 역거리 가중치법(inverse distance weighting, IDW) 방법을 이용하였다.

  • PDF

Bias Correction for GCM Long-term Prediction using Nonstationary Quantile Mapping (비정상성 분위사상법을 이용한 GCM 장기예측 편차보정)

  • Moon, Soojin;Kim, Jungjoong;Kang, Boosik
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.833-842
    • /
    • 2013
  • The quantile mapping is utilized to reproduce reliable GCM(Global Climate Model) data by correct systematic biases included in the original data set. This scheme, in general, projects the Cumulative Distribution Function (CDF) of the underlying data set into the target CDF assuming that parameters of target distribution function is stationary. Therefore, the application of stationary quantile mapping for nonstationary long-term time series data of future precipitation scenario computed by GCM can show biased projection. In this research the Nonstationary Quantile Mapping (NSQM) scheme was suggested for bias correction of nonstationary long-term time series data. The proposed scheme uses the statistical parameters with nonstationary long-term trends. The Gamma distribution was assumed for the object and target probability distribution. As the climate change scenario, the 20C3M(baseline scenario) and SRES A2 scenario (projection scenario) of CGCM3.1/T63 model from CCCma (Canadian Centre for Climate modeling and analysis) were utilized. The precipitation data were collected from 10 rain gauge stations in the Han-river basin. In order to consider seasonal characteristics, the study was performed separately for the flood (June~October) and nonflood (November~May) seasons. The periods for baseline and projection scenario were set as 1973~2000 and 2011~2100, respectively. This study evaluated the performance of NSQM by experimenting various ways of setting parameters of target distribution. The projection scenarios were shown for 3 different periods of FF scenario (Foreseeable Future Scenario, 2011~2040 yr), MF scenario (Mid-term Future Scenario, 2041~2070 yr), LF scenario (Long-term Future Scenario, 2071~2100 yr). The trend test for the annual precipitation projection using NSQM shows 330.1 mm (25.2%), 564.5 mm (43.1%), and 634.3 mm (48.5%) increase for FF, MF, and LF scenarios, respectively. The application of stationary scheme shows overestimated projection for FF scenario and underestimated projection for LF scenario. This problem could be improved by applying nonstationary quantile mapping.

Flood Risk Assessment Based on Bias-Corrected RCP Scenarios with Quantile Mapping at a Si-Gun Level (분위사상법을 적용한 RCP 시나리오 기반 시군별 홍수 위험도 평가)

  • Park, Jihoon;Kang, Moon Seong;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.73-82
    • /
    • 2013
  • The main objective of this study was to evaluate Representative Concentration Pathways (RCP) scenarios-based flood risk at a Si-Gun level. A bias correction using a quantile mapping method with the Generalized Extreme Value (GEV) distribution was performed to correct future precipitation data provided by the Korea Meteorological Administration (KMA). A series of proxy variables including CN80 (Number of days over 80 mm) and CX3h (Maximum precipitation during 3-hr) etc. were used to carry out flood risk assessment. Indicators were normalized by a Z-score method and weighted by factors estimated by principal component analysis (PCA). Flood risk evaluation was conducted for the four different time periods, i.e. 1990s, 2025s, 2055s, and 2085s, which correspond to 1976~2005, 2011~2040, 2041~2070, and 2071~2100. The average flood risk indices based on RCP4.5 scenario were 0.08, 0.16, 0.22, and 0.13 for the corresponding periods in the order of time, which increased steadily up to 2055s period and decreased. The average indices based on RCP8.5 scenario were 0.08, 0.23, 0.11, and 0.21, which decreased in the 2055s period and then increased again. Considering the average index during entire period of the future, RCP8.5 scenario resulted in greater risk than RCP4.5 scenario.

Analysis of Future IDF Curves Using Various Bias Correction Method (다양한 편의보정 기법을 이용한 미래 IDF곡선의 분석)

  • Kim, Sangdan;Kim, Kyungmin;Lee, JeongHoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.323-323
    • /
    • 2018
  • 최근 기후변화에 대한 관심이 증대됨에 따라 미래 기후모델자료를 기반으로 연구가 다양하게 진행되고 있다. 기후변화가 적용된 자료는 미래 수자원관리, 방재를 위한 수공구조물의 설계 등 다양한 방식으로 실무에 적용되고 있다. 하지만 기후모델로부터 모의된 결과는 어느 정도 관측자료와 차이가 발생하게 되며, 이러한 계통적 오차는 모델 내부에서 해결하기가 쉽지 않다. 그렇기 때문에 기후모델로부터 모의된 결과를 보정하기 위해 편의보정 기법을 활용한다. 그리고 미래 기후모델자료는 불확실성을 내재하고 있기 때문에 다양한 편의보정 기법을 적용하여 불확실성의 범위를 확인해 보았다. 사용된 편의보정 기법으로는 Quantile Mapping(QM), Quantile Delta Mapping(QDM), Detrended Quantile Mapping(DQM), Delta Change Method(DCM)을 이용하였다. 편의보정에 적용한 확률분포형은 일반극치분포(GEV분포), Type-1 극치분포(Gumbel분포)를 사용하였다. GEV분포를 기본으로 하여 조건적으로 GEV분포를 사용할 수 없는 경우, Gumbel분포를 사용하였다. 본 연구에서는 독일의 전지구기후모델(Global Climate Model, GCM)인 MPI-ESM-LR에 RCP 8.5 사나리오를 강제장으로 하여 지역기후모델(Regional Climate Model, RCM)인 WRF를 이용하여 동역학적으로 다운스케일한 강우자료를 사용하였다. 강우자료 중에서 강릉, 인천, 부산, 목포지점에 해당하는 자료를 추출하여 연 최대 강우강도 시계열을 산정하고 4가지 편의보정 기법을 이용하여 편의보정을 하였다. 편의보정 수행된 연 최대 강우강도 시계열을 scale-invariance 기법으로 다운스케일하여 미래 IDF곡선을 유도한 뒤, 편의보정별로 유도한 IDF곡선의 비교를 통해 편의보정기법이 미래 IDF곡선에 미치는 영향을 분석하였다.

  • PDF

Assessment of Frequency Analysis using Daily Rainfall Data of HadGEM3-RA Climate Model (HadGEM3-RA 기후모델 일강우자료를 이용한 빈도해석 성능 평가)

  • Kim, Sunghun;Kim, Hanbeen;Jung, Younghun;Heo, Jun-Haeng
    • Journal of Wetlands Research
    • /
    • v.21 no.spc
    • /
    • pp.51-60
    • /
    • 2019
  • In this study, we performed At-site Frequency Analysis(AFA) and Regional Frequency Analysis(RFA) using the observed and climate change scenario data, and the relative root mean squared error(RMMSE) was compared and analyzed for both approaches through Monte Carlo simulation. To evaluate the rainfall quantile, the daily rainfall data were extracted for 615 points in Korea from HadGEM3-RA(12.5km) climate model data, one of the RCM(Regional Climate Model) data provided by the Korea Meteorological Administration(KMA). Quantile mapping(QM) and inverse distance squared methods(IDSM) were applied for bias correction and spatial disaggregation. As a result, it is shown that the RFA estimates more accurate rainfall quantile than AFA, and it is expected that the RFA could be reasonable when estimating the rainfall quantile based on climate change scenarios.

Selection framework of representative general circulation models using the selected best bias correction method (최적 편이보정 기법의 선택을 통한 대표 전지구모형의 선정)

  • Song, Young Hoon;Chung, Eun-Sung;Sung, Jang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.5
    • /
    • pp.337-347
    • /
    • 2019
  • This study proposes the framework to select the representative general circulation model (GCM) for climate change projection. The grid-based results of GCMs were transformed to all considered meteorological stations using inverse distance weighted (IDW) method and its results were compared to the observed precipitation. Six quantile mapping methods and random forest method were used to correct the bias between GCM's and the observation data. Thus, the empirical quantile which belongs to non-parameteric transformation method was selected as a best bias correction method by comparing the measures of performance indicators. Then, one of the multi-criteria decision techniques, TOPSIS (Technique for Order of Preference by Ideal Solution), was used to find the representative GCM using the performances of four GCMs after the bias correction using empirical quantile method. As a result, GISS-E2-R was the best and followed by MIROC5, CSIRO-Mk3-6-0, and CCSM4. Because these results are limited several GCMs, different results will be expected if more GCM data considered.

Correction of Mean and Extreme Temperature Simulation over South Korea Using a Trend-preserving Bias Correction Method (변동경향을 보존하는 편의보정기법을 이용한 우리나라의 평균 및 극한기온 모의결과 보정)

  • Jung, Hyun-Chae;Suh, Myoung-Seok
    • Atmosphere
    • /
    • v.25 no.2
    • /
    • pp.205-219
    • /
    • 2015
  • In this study, the simulation results of temperature by regional climate model (Reg- CM4) over South Korea were corrected by Hempel et al. (2013)'s method (Hempel method), and evaluated with the observation data of 50 stations from Korea Meteorological Administration. Among the 30 years (1981~2010) of simulation data, 20 years (1981~2000) of simulation data were used as a training data, and the remnant 10 years (2001~2010) data were used for the evaluation of correction. In general, the Hempel method and parametric quantile mapping show a reasonable correction both in mean and extreme climate of temperature. As the results, the systematic underestimation of mean temperature was greatly reduced after bias correction by Hempel method. And the overestimation of extreme climate, such as the number of TN5% and freezing day, was significantly recovered. In addition to that, the Hempel method better preserved the temporal trend of simulated temperature than other bias correction methods, such as the quantile mapping. However, the overcorrection of the extreme climate related to the upper quantile, such as TX5% and hot days, resulted in the exaggeration of the simulation errors. In general, the Hempel method can reduce the systematic biases embedded in the simulation results preserving the temporal trend but it tends to overcorrect the non-linear biases, in particular, extreme climate related to the upper percentile.

Assessment of Climate Change Effect on Drought in Korea (기후변화가 한반도 가뭄에 미치는 영향평가)

  • Kyoung, Min-Soo;Kim, Byung-Sik;Kim, Hung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.1457-1461
    • /
    • 2009
  • 기후변화로 인한 강수의 양과 패턴의 변화는 가뭄이나 홍수와 같은 극한사상의 발생가능성을 점차 증가시키고 있다. 이러한 극한사상의 발생에 대비하고자 기후변화가 가뭄이나 홍수에 미치는 영향 평가에 대한 연구가 전 세계적으로 활발히 진행 중이다. 이에 본 연구에서는 월 단위로 IPCC를 통해서 제공되는 Global Climate Model(GCM)중 하나인 BCM2 모형(A2 시나리오 선택)을 기반으로 기후변화가 한반도 가뭄에 미치는 영향평가 방안을 제시하고자 한다. 우선 전구단위 기후모형인 BCM2 모형을 격자단위 관측자료인 NCEP(National Centers for Environmental Prediction)자료를 이용하여 서울기상관측소 지점으로 축소하였다. 또한 축소된 강우자료의 편의를 보정하기 위하여 Quantile mapping 기법을 적용하였으며, 최종적으로 제시된 서울지점의 월 강우를 대상으로 표준강수지수(SPI)를 산정하여 기후변화가 서울지점의 가뭄에 미치는 영향을 평가하였다. 분석결과 기후변화를 고려할 경우, 전반적인 가뭄의 심도는 크게 깊어지지 않았으나 가뭄의 지속기간이 길어져 가뭄으로 인한 피해가 더욱 증가할 것으로 예상되었다.

  • PDF