• Title/Summary/Keyword: Quantification of environmental characteristics

Search Result 69, Processing Time 0.026 seconds

Quantification of Directional Properties of Channel Network and Hill Slope (하천망과 사면의 방향성 정량화)

  • Park, Changyeol;Yoo, Chulsang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.233-242
    • /
    • 2011
  • This study quantified directional properties of channel network and hill slope for a river basin by applying the von Mises distribution, also examined the relation between them. Ultimately, it was examined that whether the directional properties of channel network and hill slope have a certain relation, which might be considered to the rainfall-runoff modeling. From the results derived by analyzing the Naesung stream basin, the von Mises distribution was found well to explain the directional characteristics of directional properties of channel network. There was a clear relation between directional properties of channel network and hill slope. The higher-order streams also showed very obvious modal characteristics. The results derived in this study could be helpful to estimate more quantitatively the difference in the runoff response with respect to the directional properties of channel network and hill slope.

The Characteristics and Survival Rates of Evergreen Broad-Leaved Tree Plantations in Korea (난대상록활엽수종 조림지 활착률과 영향인자)

  • Park, Joon-Hyung;Jung, Su-Young;Lee, Kwang-Soo;Lee, Ho-Sang
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.4
    • /
    • pp.513-521
    • /
    • 2019
  • With rapid climate change and increasing global warming, the distribution of evergreen broad-leaved trees (EBLTs) is gradually expanding to the inland regions of Korea. The aim of the present study was to analyze the survival rate of 148 EBLT plantations measuring 180 ha and to determine the optimal plantation size that would help in coping with climate change in the warm, temperate climate zone of the Korean peninsula. For enhancing the reliability of our estimated survival model, we selected a set of 11 control variables that may have also influenced the survival rates of the EBLTs in the 148 plantations. The results of partial correlation analysis showed that the survival rate of 67.0±26.9 of the EBLTs in the initial plantation year was primarily correlated with plantation type by the crown closure of the upper story of the forest, wind exposure, and precipitation. For predicting the probability of survival by quantification theory, 148 plots were surveyed and analyzed with 11 environmental site factors. Survival rate was in the order of plantation type by the crown closure of upper story of the forest, wind exposure, total cumulative precipitation for two weeks prior to planting, and slope stiffness in the descending order of score range in the estimated survival model for the EBLTs with the fact that survival rate increased with shade rate of upper story to some extent.

Quantitative Zooplankton Collection Methods for Various Freshwater Ecosystems and Their Applications (담수생태계 특성을 고려한 동물플랑크톤 정량 조사법의 비교와 활용)

  • Oh, Hye-Ji;Chang, Kwang-Hyeon;Jeong, Hyun-Gi;Go, Soon-Mi;La, Geung-Hwan;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.3
    • /
    • pp.231-244
    • /
    • 2019
  • Zooplankton is essential biological assemblage in understanding the structure and function of aquatic ecosystems, since it plays as a linkage between primary producers and higher trophic level organisms such as fish. Although zooplankton has planktonic characteristics, the sampling and treatment methods for its community analyses are more complicated and variable compared with phytoplankton due to its high diversity in body size and species-specific depth selection behaviors. In the present paper, we reviewed representative classical methods for field sampling and treatments of freshwater zooplankton in relation with quantification of its community structure, and suggested appropriate methods depending on various research objectives.

Application of the Beta Distribution for the Temporal Quantification of Storm Events (호우사상의 시간적 정량화를 위한 베타분포의 적용)

  • Jun, Chang-Hyun;Yoo, Chul-Sang
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.6
    • /
    • pp.531-544
    • /
    • 2012
  • This study suggested the parameter estimation method for given rainfall events to be properly expressed by the beta distribution. For this purpose, this study compared the characteristics of probability density function with the parameter proposed considering the cases with and without addition to the rainfall peak, and the cases of using the real hyetograph and the rearranged hyetograph about the rainfall peak. As an example, this study analyzed the independent rainfall events at Seoul in 2010 and the annual maximum independent rainfall events from 1961 to 2010. The results derived are as follows. First, this study confirmed the necessity of additional consideration on rainfall peak to mimic the real hyetograph of rainfall events by the beta distribution. Second, this study confirmed the case of using rearranged hyetograph about the rainfall peak derived a better beta distribution to well mimic the characteristics of real rainfall than the case using the real hyetograph.

Influencing Factor Analysis on Groundwater Level Fluctuation Near River (지반 및 수문특성을 고려한 하천인근 지역의 지하수위 변동 영향인자 분석)

  • Kim, Incheol;Lee, Junhwan
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.72-81
    • /
    • 2018
  • Groundwater level (GWL) fluctuation, which can occur due to several artificial and natural reasons, causes reduction of bearing capacity of foundation structures and can lead settlement of ground. As a result, GWL fluctuation affects stability and serviceability of entire building. However, in many case, GWL is considered as fixed value that obtain from geotechnical investigations. That is reason that GWL fluctuation is considered as area of non-geotechnical engineering. In present study, factors causing GWL fluctuation were analyzed at urban and rural area as preliminary research of quantification of GWL fluctuation. GWL varies according to hydrological and geographical characteristics. Also, the influence factors are largely affected by hydrological and geographical characteristics.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

Regionalization of Daily Flow Characteristics Using Flow Duration Curve and Spatial Interpolation Algorithm (유황곡선과 공간 내삽 알고리즘을 이용한 일유출량 특성의 지역화)

  • Yun, Yong-Nam;Kim, Jae-Seong;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.6
    • /
    • pp.671-679
    • /
    • 2000
  • Regionalization technique using flow duration curve and spatial interpolation algorithm is developed for the purpose of estimating daily flow time series at ungauged station. In this study, we assumed a part of 8 gauging stations of Nakdong River basin as ungauged stations. Then, we generated flow duration curves and daily flow hydrographs by regionalization technique at ungauged stations. And we compared generated and observed hydrographs. The simulation results showed that the observed flows were well simulated by the proposed method and that the general patterns of the observed flows were satisfactorily reproduced by the regionalization technique. From these results, it is possible that we obtain daily flow information without application of labour intensive and time consuming deterministic models, which require complicating quantification of model parameter values. And we compared the regionalization techniques with the specific discharge method which is the most general approach in hydrological practice in Korea. The results showed that the regionalization technique was superior to specific discharge method.method.

  • PDF

Development of Assessment Model for the Optimal Site Prediction of Evergreen Broad-leaved Trees in Warm Temperate Zone according to Climate Change (기후변화에 따른 난대상록활엽수의 적지예측 평가 모델 개발)

  • Kang, Jin-Teak;Kim, Jeong-Woon;Kim, Cheol-Min
    • Journal of agriculture & life science
    • /
    • v.46 no.3
    • /
    • pp.47-58
    • /
    • 2012
  • This study was carried out to develop assessment model for the optimal site prediction of Dendropanax morbifera, Evergreen broad-leaved trees in warm temperate zone according to climate change. It was created criterion for assessment model of the optimal site prediction by quantification method to possible analysis of quantitative and qualitative data, through study relationship between growth of tree and site environmental factors. A program of the optimal site prediction was developed using program version 3.2, an Avenue and Dialog Designer tool of ESRI as GIS(geographic information system) engine. Developed program applied to test accuracy of the optimal site prediction in study area of Wando, Jeollanam-do, having a various evergreen broad-leaved trees of warm temperate zone. In the results from analysis of the optimal site prediction on Dendropanax morbifera, the characteristics of optimal site were analyzed site environmental features with 401~500m of altitude, $15^{\circ}$ of slope, hillside of local topography, alluvium of deposit type, convex of slope type and south of aspect. The mapping area per grade of the optimal site prediction in the Dendropanax morbifera showed 1,487.2ha(25.4%) of class I, 1,020.3ha(17.4%) of class II, 2,231.8ha(38.2%) of class III and 1,110.5ha(19.0%) of class IV.

Analysis and performance of offshore platforms in hurricanes

  • Kareem, Ahsan;Kijewski, Tracy;Smith, Charles E.
    • Wind and Structures
    • /
    • v.2 no.1
    • /
    • pp.1-23
    • /
    • 1999
  • Wind effects are critical considerations in the design of topside structures, overall structural systems, or both, depending on the water depth and type of offshore platform. The reliable design of these facilities for oil fields in regions of hostile environment can only be assured through better understanding of the environmental load effects and enhanced response prediction capabilities. This paper summarizes the analysis and performance of offshore platforms under extreme wind loads, including the quantification of wind load effects with focus on wind field characteristics, steady and unsteady loads, gust loading factors, application of wind tunnel tests, and the provisions of the American Petroleum Institute Recommended Practice 2A - Working Stress Design (API RP 2A-WSD) for the construction of offshore structures under the action of wind. A survey of the performance of platforms and satellite structures is provided, and failure mechanisms concerning different damage scenarios during Hurricane Andrew are examined. Guidelines and provisions for improving analysis and design of structures are addressed.

Evaluation of peak-fitting software for magnesium quantification through k0-instrumental neutron activation analysis

  • Dasari, Kishore B.;Cho, Hana;Jacimovic, Radojko;Park, Byung-Gun;Sun, Gwang-Min
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.462-468
    • /
    • 2022
  • The selection and effective utilization of peak-fitting software for conventional gamma-ray spectrum analysis is significant for accurate determination of the mass fraction of elements, particularly in complex peak regions. Majority of the peak-fitting programs can derive similar peak characteristics for singlet peaks, but very few programs can deconvolute multi-peaks in a complex region. The deconvolution of multi-peaks requires special peak-fitting functions, such as left and right-skew distributions. In the this study, 843.76 keV (27Mg) peak area from the complex region (840 keV-850 keV) determined and compared using four different peak-fitting programs, namely, GammaVision, Genie2000, HyperLab, and HyperGam. The 843.76 keV peak interfered with 841.63 keV (152mEu) and 846.81 keV (56Mn). The total Mg concentration was determined through k0-instrumental neutron activation analysis by applying the isotopic interference correction factor 27Al(n,p)27Mg through the simultaneous determination of Al concentration. HyperLab and HyperGam peak-fitting programs reported consistent peak areas, and resultant concentrations agreed with the certified values of matrix-certified reference materials.