• Title/Summary/Keyword: Quality Design Simulation

Search Result 871, Processing Time 0.033 seconds

Automated Mold Design to Optimize Multi-Quality Characteristics in Injection Molded Parts Based on the Utility Theory and Modified Complex Method (효용이론과 수정콤플렉스법에 기초한 사출 성형품의 다특성 최적화를 위한 자동 금형 설계)

  • Park, Byung-H
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.9
    • /
    • pp.210-221
    • /
    • 2000
  • Plastic mold designers and frequently faced with optimizing multi-quality issues in injection molded parts. These issues are usually in conflict with each other and thus tradeoff needs to be made to reach a final compromised solution. in this study an automated injection molding design methodology has been developed to optimize multi-quality characteristics of injection molded parts. The features of the proposed methodology are as follows : first utility theory is applied to transform the original multi-objective problem into single-objective problem. Second is an implementation of a direct search-based injection molding optimization procedure with automated consideration of robustness against process variation. The modified complex method is used as a general optimization tool in this study. The developed methodology was applied to an actual mold design and the results showed that the methodology was useful through the CAE simulation using a commercial injection molding software package. Applied to production this study will be of immense value to companies in reducing the product development time and enhancing the product quality.

  • PDF

Robust $H_{\infty}$ Controller Design for Performance Improvement of Semi-Active Suspension System (반능동 현가장치의 성능향상을 위한 견실 $H_{\infty}$ 제어기 설계)

  • 정승권
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.4
    • /
    • pp.85-90
    • /
    • 2000
  • In this paper, a robust $H_{\infty}$ a controller for semi-active suspension system is proposed. For the improvement of ride quality, the robust $H_{\infty}$ controller is designed to satisfy robust stability and road disturbance attenuation using an $H_{\infty}$ control design procedure. The performances of the design controller for some road conditions are evaluated by computer simulation and finally these simulation results show the usefulness and applicability of the proposed robust $H_{\infty}$ controller.

  • PDF

Application of Expert System to Automatic Dimension Marking on Design Drawing (설계도면의 치수표시 자동화를 위한 전문가 시스템의 적용)

  • Choi Moon Hee;Lee Keun Ho;Cho Tae Ho
    • Journal of the Korea Society for Simulation
    • /
    • v.13 no.4
    • /
    • pp.31-42
    • /
    • 2004
  • GDS (Grating automatic Drawing System), which is an automatic design system of a metal product called grating, is a system that produces various detailed drawings on the basis of information within a Plan Drawing that represents layout of the grating such as locations, shapes, directions, etc. However, automatically produced drawings by GDS do not fully satisfy the standard of the general dimension marking method used among the layout designers. The lack of this standard quality mainly results from the fact that overlapping among dimension markings appear frequently. To solve the overlapping problem we applied the rule-based expert system. The rules are designed based on the expertise of skilled layout designers within the grating production lines.

  • PDF

A study on designing spindle stage using optimization of flexure (유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구)

  • Park, Jaehyun;Kim, Hyo-Young;Yoo, Hyeongmin
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

Process Design and Finite Element Analysis of Rectangular Cup used for Ni-MH Battery with High Aspect Ratio (니켈-수소 2차 전지용 고세장비의 직사각 컵에 대한 성형공정 설계 및 유한요소해석)

  • Ku, T.W.;Kim, H.Y.;Song, W.J.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.17 no.3
    • /
    • pp.170-181
    • /
    • 2008
  • The shape of rectangular cup used for Ni-MH(Nickel-coated Metal Hydrogen) battery for hybrid car looks quite simple, but the forming process of extruding and setting up process design are highly difficult. Furthermore, there are few concrete reports on the rectangular deep drawn cup as part of hybrid vehicles till now. In this study, process design for rectangular cup in the multi-stage deep drawing process is carried out, and FE analysis is also preformed based on the result of the process design. From the simulation result, some unexpected problems such as earing, wrinkling and excessive thickness changes of the intermediate blank occurred. To overcome these failures, a series of modification for punch shape in the forming process design are completed and applied. Considering the modified punch shape in the multi-stage deep drawing process, additional FE analysis is also carried out and the simulation result is verified in view of the deformed shape, thickness change and effective strain distribution. The result of FE analysis with the improved process design confirmed not only reducing thinning of wall and possibilities of failure but also improving the quality of drawing product through the modification of punch shape.

Optimal Design of Process Parameters for Flatness Improvement in Semi-Solid Casting Processes (반응고 주조공정에서 평면도 증대를 위한 공정변수의 최적설계)

  • Kim, Hyun-Goo;Chung, Sung-Chong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.6
    • /
    • pp.28-34
    • /
    • 2008
  • Mg alloy is widely used for the IT, auto and consumer electronics industries. Semi-solid casting(SSC) of magnesium alloys is used to produce high quality components. SSC process is analogous with the injection molding of plastics. The high strength and low weight characteristics of magnesium alloys render the high-precision fabrication of thin-walled components with large surface areas. To produce thin-walled magnesium alloy parts, SSC process parameters on the quality of the finished product should be clearly studied. In this paper, to select optimal process parameters, Taguchi method is applied to the optimal design of the process parameters in the SSC process. The die temperature, injection velocity and barrel temperature of the SSC process are selected for the process parameters. The effectiveness of the optimal design is verified through the CAE software.

A Study of D-Optimal Design in Nonlinear Model Using the Genetic Algorithm (유전자 알고리즘을 이용한 비선형 모형의 D-최적 실험계획법에 관한 연구)

  • Yum, Joon-Keun;Nam, Ki-Seong
    • Journal of Korean Society for Quality Management
    • /
    • v.28 no.2
    • /
    • pp.135-146
    • /
    • 2000
  • This study has adapted a genetic algorithm for an optimal design for the first time. The models using a simulation are the nonlinear models. Using an genetic algorithm in D-optimal, it is more efficient than previous algorithms to get an object function. Not like other algorithms, without any troublesome restrictions about the initial solution, not falling into a local optimal solution, it's the most suitable algorithm. Also if we use it without any adding experiments, we can use it to find optimal design of experimental condition efficiently.

  • PDF

A Simulation for the Impact Response Analysis of a Motor Cycle Helmet (시뮬레이션에 의한 오토바이 헬멧의 충격 응답 분석)

  • 최명진
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.4
    • /
    • pp.25-31
    • /
    • 1999
  • To analyze the impulsive response of a motorcycle helmet, a simulation is performed using the finite element method. Based upon the simulation result, an equivalent one degree of freedom vibrational system is adapted, and transient impulsive responses are analysed to investigate the influence of engineering parameters such as damping, natural frequency, and impact velocity on the impulsive response of the helmet. Maximum gravitational acceleration reduces as the damping factor value increases. When the damping factor value is around 0.6 or larger, the maximum acceleration does not change. With respect to the natural frequency and the impact velocity, it increases linearly. The relationship between head injury criterion(HIC) and maximum gravitational acceleration is also presented. The scheme of this study is expected to be utilized to economize the design process of high quality motorcycle helmets.

  • PDF

Cast Defect Quantify on the Simulation for Large Steel Ingots and Its Application (대형잉곳 전산모사 결함 정량화 및 활용연구)

  • NamKung, J.;Kim, Y.C.;Kim, M.C.;Yoon, J.M.;Chae, Y.W.;Lee, D.H.;Oho, S.H.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.94-97
    • /
    • 2009
  • Cast defect in large steel ingots are estimated in quality and compared each other cast conditions on simulation results by now. The cast defects, micro-crack, shrinkage, pin hole which are predictable in simulation with a reasonable accuracy. In this study, 15 ton steel ingot casting was simulated for solidification model and cast defect prediction. And the real cast was carried out in a foundry for the compeer to the simulation results, the cast defect prediction. Also, the quantity of predicted defect was tried to measuring with the defect mach counting for the various simulated cast conditions. The defect quantity work was used to find the optimized cast condition in DOE(design of experiment) procedure.

  • PDF

Initial System for Automation of PDQ-based Shape Quality Verification of Naval Ship Product Model (제품데이터품질(PDQ) 평가에 따른 함정 제품모델의 형상 품질검증 자동화 초기 시스템)

  • Oh, Dae-Kyun;Hwang, In-Hyuck;Ryu, Cheol-Ho;Lee, Dong-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.1
    • /
    • pp.113-119
    • /
    • 2014
  • Recently, R.O.K. Navy is increasing re-usability of design data and application of M&S(Modeling and Simulation) through the establishment of collaborative product development environment focused on Naval Ship Product Model(NSPM). As a result, the reliability of the result of design is getting better, and furthermore, a study to improve quality of construction through simulation of production/operation is in progress. Accordingly, the database construction of design data and the DB(Database) quality become important, but there was not research related to those or it was just initial state. This paper conducted research about system of the quality verification process of shape elements which compose NSPM based on the quality verification guideline of NSPM as the result of the precedent study. The hull surface was limited as verification object. The study to verify two things that application of basic drawing by the cad model of hull surface, and whether there is error in the geometric quality of cad model was progressed. To achieve this goal, the verification criteria and algorithm were defined and the prototype system which is based on was developed.